The Open University of Sri Lanka

B.Sc. Degree Programme – Level 05

Department of Computer Science

CSU5305 - Theory of Computing

Continuous Assessment Test-01 (CAT-1) 2023/24

Duration: One hour only (1 hour)

Time: 10.30 a.m. – 11.30 a.m.

Reg Number:	

Important Instructions

Date: 05.01.2024

- This paper has 2 questions on 03 pages.
- Answer all 2 questions.
- Write your answers only on the space provided on this question paper.
- No extra sheets will be provided.
- Questions appear on both sides of the paper.
- Last page (page 04) can be used as for rough work.

To be completed	by	the
examiners:		

1	
2	
Total	
%	

(01) (i)	What are the three main streams covered by CSU5305- Theory of Computing?
	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	3.
(ii)	Write the definition of an Alphabet in Theory of Computing.
(iii)	Using your answer to (01) part (ii) define a string in Theory of Computing.
(iv)	what is meant by a Null String ?
(v)	If S and T are two sets of strings, write strings concatenation in set notation.
(vi)	Using your answer to (01) part (v) write the concatenation of the strings 01 with 100.
(vii)	What is the main difference between Kleene Closure and Positive Closure of an alphabet?
(viii) $\{0,1\}$ is a binary alphabet and 11 is a binary string over the alphabet $\{0,1\}$. What is the length of the string 11?
(ix)	If Σ is an alphabet, then what is denoted by Σ^*
	Consider an alphabet Σ and suppose A on Σ is a subset of Σ^* . Write one word to name A

Reg Number:

Reg Number:	

- (02) (i) For a language to be a formal language what are the two conditions needed?
 - (ii) what is the relationship between a Regular Expression and a Regular Language?
 - (iii) Write the two base case regular expressions over Σ

1.

2.

- (iv) Write the corresponding languages of the regular expressions given below.
 - $(a) (cd)^*$:
 - $(b) (c^*)(d^*)$:
- (v) If L_1 and L_2 are languages given by $L_1 = \{\varepsilon, 1, 01, 11\}$ and $L_2 = \{1, 01, 101\}$ what are

$$(a) L_1 - L_2 =$$

$$(b)L_2 - L_1 =$$

(50 marks)