## The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX5239 - Physical Electronics Final Examination - 2015/2016



Date: 2016-12-06 Time:0930-1230

This paper has two sections. Answer **five questions** selecting **at least two question from each section**.

Adhere to the usual notations.

**Note:** Charge of an electron =  $1.602 \times 10^{-19}$  C, Boltzmann constant =  $8.617 \times 10^{-5}$  eV  $K^{-1}$ . For any missing parameters suitable values can be assumed.

## Section A

Q1.

- (a) Determine the probability of occupancy of a state that is located at 0.259eV above  $E_F$  at
  - i. T = 0 K
  - ii. T = 300 K

iii. 
$$T = 600 K$$

[2X3]

- (b) Determine the probability of vacancy of a state that is located at 0.4eV below  $E_F$  at T = 300 K.
- (c) Repeat part (b) if the state is at 0.01 eV above  $E_F$  at T=300K.

[4]

Q2.

(a) Explain what do you meant by Hall Effect in your own words.

[5]

- (b) Germanium is doped with  $5 \times 10^{15}$  donor atoms per  $cm^3$  at 300 K. The dimensions of the Hall device are  $d=5 \times 10^{-3}$  cm,  $w=2 \times 10^{-2}$  cm and l=0.1 cm. The current  $I=250~\mu A$ , the applied voltage is  $V_x=100~mV$  and the magnetic flux is  $B_z=5 \times 10^{-2}$  Tesla. Calculate
  - i. The Hall voltage
  - ii. The Hall field and
  - iii. The carrier mobility

[5X3]

Q3.

- (a) Briefly explain why the narrower the bang gap the higher is the intrinsic carrier density in a semiconductor. [10]
- (b) Discuss why in an intrinsic semiconductor the Fermi energy level  $E_F$  does not lie exactly in the middle of the band gap. [10]

| Q4.                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) Explain the meaning of the term "mobility" and its dependence on the frequency of collisions.                                                                                                                                                                                  |
| (b) Consider a uniformly doped silicon p-n junction with doping concentrations $N_A = 5 \times 10^{17} \ cm^{-3}$ and $N_D = 10^{17} \ cm^{-3}$ .                                                                                                                                  |
| i. Calculate the built in voltage $V_0$ at $T = 300 K$ . [8]                                                                                                                                                                                                                       |
| ii. Determine the temperature at which $V_0$ decreases by 1%. [6]                                                                                                                                                                                                                  |
| Section B                                                                                                                                                                                                                                                                          |
| Q5.                                                                                                                                                                                                                                                                                |
| (a) Explain the operation of a diode using the atomic level behavior under the three bias conditions.                                                                                                                                                                              |
| (b) What are the special features of a Schotkey diode? What physical construction has given it these characteristics? [6]                                                                                                                                                          |
| (c) Explain the operation of Schotkey diode with the help of energy band diagrams. [6]                                                                                                                                                                                             |
| Q6.                                                                                                                                                                                                                                                                                |
| (a) LED is a special diode which uses <i>direct band gap</i> semiconductor materials. Explain what is meant by <i>direct band gap</i> materials. [4]                                                                                                                               |
| (b) Completely explain how light is emitted in a LED with the help of energy band diagrams. [6]                                                                                                                                                                                    |
| (c) In GaAs the most probable energy level for an electron is $\frac{kT}{2}$ above the conduction                                                                                                                                                                                  |
| band edge. Similarly the most probable level for a hole is $\frac{kT}{2}$ below the valence band                                                                                                                                                                                   |
| edge. The energy gap for GaAs is 1.4eV. Hence calculate the emitted frequency of a GaAs LED at 27°C.                                                                                                                                                                               |
| (d) Plot the Emitted frequency Vs. Temperature curve for the above LED. [4]                                                                                                                                                                                                        |
| Q7.                                                                                                                                                                                                                                                                                |
| <ul> <li>(a) Describe the special design features in a bipolar junction transistor. (You should state the doping concentrations and thickness of different sections in the BJT)</li> <li>(b) Explain the operation of a npn BJT at an atomic level highlighting how the</li> </ul> |
| amplification is achieved. [8]                                                                                                                                                                                                                                                     |
| (c) Draw a graph to show the minority carrier distribution in a npn transistor biased in the active region.                                                                                                                                                                        |
| Q8.                                                                                                                                                                                                                                                                                |
| (a) i. Completely explain the operation of an n-channel MOSFET. [5]                                                                                                                                                                                                                |
| i. Completely explain the operation of an n-channel MOSFET. [5] ii. Deduce $I_D$ Vs. $V_{DS}$ graph for the n-channel MOSFET from your answer to (i) [5]                                                                                                                           |
| iii. What is <i>pinch off</i> in JFET? [4]                                                                                                                                                                                                                                         |
| (b) Briefly explain the hazards which are associated with the semiconductor industry                                                                                                                                                                                               |