The Open University of Sri Lanka

B.Sc/B.Ed. DEGREE, CONTINUING EDUCATION PROGRAMME

Open Book Test 2023/2024

Level 03 Pure Mathematics

PEU3202/PEE3202- Vector Spaces

Duration: - One hour

Date: -23-12-2023

Time: 4.00 -5.00 p.m.

Answer all questions

1.

(a) Let $V = \{ (a_1, a_2) \mid a_1, a_2 \in \mathbb{R} \}$. Is V a vector space over the field \mathbb{R} under the operations given below? Justify your answer.

For any $(a_1, b_1), (a_2, b_2) \in V$ and $\alpha \in \mathbb{R}$

- (i) $(a_1, b_1) + (a_2, b_2) = (1, a_2 + b_2)$; $\alpha(a_1, b_1) = (a_1, b_1)$
- (ii) $(a_1, b_1) + (a_2, b_2) = (a_1 + b_1, a_2 + b_2)$; $\alpha(a_1, b_1) = (3a_1, \alpha^2 b_1)$
- (b) Determine whether the set $V = \{(2a, 3b) \mid a, b \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 over the field \mathbb{R} under usual addition and scalar multiplication. Justify your answer.
- (c) Is the three vectors $u_1 = (1, 2, 2)$, $u_2 = (1, -1, 2)$ and $u_3 = (1, 0, 1)$ form a basis for \mathbb{R}^3 over the field \mathbb{R} under usual addition and scalar multiplication? Justify your answer.

2.

Let $V = \mathbb{R}^4$ and $W = \mathbb{R}^2$. Note that V and W are vector spaces over field \mathbb{R} under the usual addition and scalar multiplication.

Consider the mapping $T: V \to W$ be defined by T(a, b, c, d) = (a - b, c + 2d).

- (i) Show that T is a linear transformation.
- (ii) Find the kernel of T.
- (iii) Is T an Isomorphism? Justify your answer.
- (iv) Find the image of T and prove that image of T is a subspace of vector space W.

