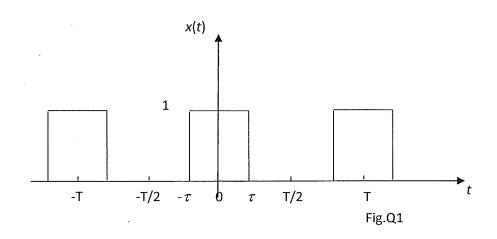

The Open University of Sri Lanka

Department of Electrical and Computer Engineering

Final Examination 2015/2016



Time: 09.30 - 12.30 hrs.

Date: 2016-12 -10

Answer Any Five Questions

1.

- (a) Find the Fourier series of x(t) (Express x(t) in the form $x(t) = \sum A_n \cos n\omega_0 + B_n \sin n\omega_0$ and find A_n and B_n). Also show that A_n has a real value. What can you say about B_n ? [5 marks]
- (b) Plot $\sqrt{{A_n}^2+{B_n}^2}$ vs. $n\omega_0$, where $\omega_0=\frac{2\pi}{T}$. [4 marks]
- (c) How does the answer to (b) change if x(t) is changed to $x(t-t_0)$? (No calculations expected for this answer.) [5 marks]
- (d) If $T \to \infty$
 - (i) redraw the distribution of different frequency components. [3 marks]
 - (ii) interpret the result in (a) with reference to the new signal formed. [3 marks]

2.

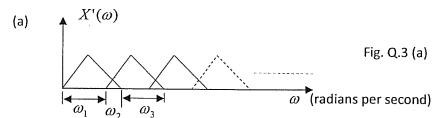
(a) Two symmetrical rectangular pulses $s_1(t)$ and $s_2(t)$ have pulse widths τ_1 and τ_2 respectively. Heights of both pulses are 1. If $\tau_1 > \tau_2$,

(i) find the convolution $s(t) = s_1(t) * s_2(t)$.

[4 marks]

(ii) sketch s(t).

[3 marks]


(b) (i) Find the Fourier Transform $S_1(\omega)$ of $s_1(t)$.

[4 marks]

(ii) Find the Fourier Transform $S(\omega)$ of s(t).

- [4 marks]
- (iii) Sketch $S_1(\omega)$ and $S(\omega)$ on the same diagram. Compare the two sketches and comment on their differences. [5 marks]

3.

A signal x(t) is sampled using an impulse train $p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$.

The Frequency spectrum of the sampled signal x'(t) = p(t)x(t) is shown in Fig.Q.3 (a)

(i) What is the relationship between ω_1 and ω_3 ?

[2 marks]

(ii) What is the relationship between ω_1 and T?

[3 marks]

(iii) How can x(t) be extracted from x'(t)?

[3 marks]

(iv) Suggest a value for ω_2 so that the signal extracted in (iii) has minimum distortions.

[3marks]

(v) If a rectangular pulse train is used instead of the impulse train p(t) to sample x(t), how would you modify the sketch of $X'(\omega)$ vs. ω shown in Fig.Q3(a)? [3 marks]

(b)

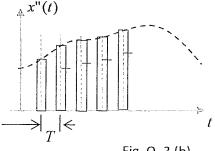
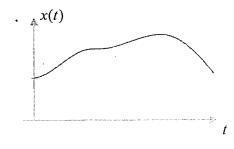
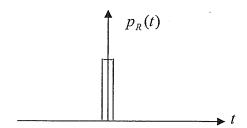
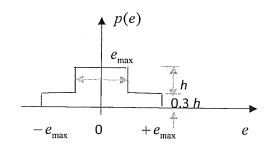




Fig. Q. 3 (b)

The signal x(t) given in (a) is flat top sampled using a rectangular pulse $p_{R}(t)$. as shown in fig. Q. 3 (b) . The resulting signal is x''(t) .

- Write the relationship between x''(t), $p_R(t)$, p(t) and x(t). [3 marks]
- (ii) Write the relationship between $\,P_{\!\scriptscriptstyle R}(\omega)$, $\,X(\omega)$ and $\,X''(\omega)$. [3 marks]


4.

- (a) A sinusoidal signal having a peak-peak voltage of 12.8 V is discretized (quantized) into N levels. If the discretized signal is pulse code modulated into a 7-bit word find
 - (i) the value of N.

[3 marks]

(ii) maximum possible quantization error ($e_{
m max}$). [4 marks]

(b) The quantization error (e) of the above process has the probability distribution shown below:

(i) How is noise added to the process? Explain.

[5 marks]

Find the signal to noise ratio S_N . (ii)

[8 marks]

5.

$$x(t) \longrightarrow \begin{bmatrix} LPF \\ \hline \\ \\ \\ \\ \\ \\ \end{bmatrix} = \cos\left(16\pi \frac{t}{T}\right)$$

LPF - ideal lowpass filter

$$p(t) = \cos\left(16\pi \, \frac{\mathsf{t}}{\mathsf{T}}\right)$$

The impulse train $x(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$ is input to the ideal lowpass filter whose cutoff

frequency $f_c = \frac{1.5}{T}$. The filtered signal is multiplied by a cosine wave p(t) to form s(t) .

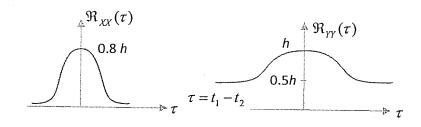
Finally p(t) is added to s(t).

(a) Show that the Fourier transform of x(t) is an impulse train. [Hint: Show that

$$X(\omega) = \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$$
 , where $\,\omega_0$ is a constant]

[8 marks]

(b) Find $\dot{y}(t)$.


[6 marks]

(c) Sketch y(t).

[6 marks]

6.

(a) Autocorrelation functions of two signals X and Y are shown below:

(i) Which signal is fast varying? X or Y? Justify your answer.

[5 marks]

(ii) Find the power of the signal Y.

[5 marks]

- (b) (i) What information can be retrieved from the Power Spectral Density function (PSD) of a random process? [4 marks]
 - (ii) The PSD of a noise signal is $S_{xx}(\omega)$. This signal is passed through a lowpass filter whose transfer function is $H(\omega)$. Explain how you would calculate
 - 1. PSD of noise

[3 marks]

2. noise power

[3 marks]

at the filter output.

7.

(a) What is Quadrature Amplitude Modulation (QAM)? For 8-QAM explain how the final QAM signal is generated from the given input data. [5 marks]

(b) (i) What is Orthogonal Frequency Division Multiplexing (OFDM)?

[3 marks]

(ii) With the help of a block diagram explain various stages of OFDM.

[3 marks]

(iii) What is the role of QAM in OFDM?

[3 marks]

(iv) What are the main advantages of OFDM over other digital transmission standards?

[3 marks]

(v) Give one major application of OFDM.

[3 marks]

8.

(a) (i) What is an optimum filter (Wiener-Hopf filter)?

[5 marks]

(ii) The total noise $\,N_{\rm 0}\,{\rm at}$ the receiving Filter output is given by

$$N_{0} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\left| H_{op}(\omega) - \frac{S_{m}(\omega)}{S_{m}(\omega) + S_{n}(\omega)} \right|^{2} \frac{S_{m}(\omega)}{S_{m}(\omega) + S_{n}(\omega)} + \frac{S_{m}(\omega)S_{n}(\omega)}{S_{m}(\omega) + S_{n}(\omega)} \right] d\omega$$

where $S_m(\omega)$ and $S_n(\omega)$ are power spectral densities of the signal and the noise at the input of the receiving filter respectively. $H_{op}(\omega)$ is the transfer function of the optimum filter.

Show that
$$H_{op}(\omega) = \frac{S_m(\omega)}{S_m(\omega) + S_n(\omega)}$$
.

[10 marks]

(b) A memoryless source emits messages $m_1, m_2, ...m_n$ with probabilities $p_1, p_2, ...p_n$ respectively. Find the entropy of the source. [5 marks]