The Open University of Sri Lanka Faculty of Natural Sciences B.Sc. / B. Ed Degree Programme

Department

: Mathematics

Level

: 04

Name of the Examination

: Final Examination

Course Title and - Code

: Continuous Functions – PEU4315

Academic Year

: 2023/2024

Date

: 23.10.2023

Time

: 09.30 a.m. To 11.30 a.m.

Duration

: Two Hours.

General Instructions

- This question paper consists of (06) questions on (02) pages.
- Answer only (04) questions. All questions carry equal marks.
 - 1. (a). (i). Let $E \subseteq \mathbb{R}$, $f: E \to \mathbb{R}$ be a function, and c be a limit point of E and $l \in \mathbb{R}$. State the definition of " $\lim_{x \to c} f(x) = l$ ".

(ii). Let
$$f(x) = x^3, x \in \mathbb{R}$$
. Prove that $\lim_{x \to 2} f(x) \neq 4$.

(b). Prove that the set of natural numbers, N has no limit points.

[25 Marks]

2. (a). Let
$$f(x) = \begin{cases} 1, & x \in [0,1) \\ 2, & x = 1. \\ 3, & x \in [1,2] \end{cases}$$

- (i). Find the value of $\lim_{x\to 1^-} f(x)$. Justify your answer.
- (ii). Find the value of $\lim_{x\to 1^+} f(x)$. Justify your answer.
- (iii). Does the $\lim_{x\to 1} f(x)$ exist? Justify your answer.
- (b). Let $g(x) = x^3 + x$ defined on the interval (0, 2). Prove that $\lim_{x \to 1} g(x) = 2$.

[25 Marks]

- 3. (a). Let $g(x) = (1-x)\sqrt{x}$ for each $x \in (0,1)$. By using the Sandwich theorem, show that $\lim_{x \to 1^{-}} g(x) = 0$.
 - (b). Prove that if $\lim_{x\to\infty} f(x) = l$ exists for some $l \in \mathbb{R}$, then l is unique.
 - (c). Using the definition of limit, prove that

$$\lim_{x \to \infty} \frac{x^2 + 3}{5x^2 + 3x + 16} = \frac{1}{5}.$$

[25 Marks]

- 4. (a). Let f,g be functions, c_1,c_2 be real numbers such that $(c_1,\infty)\subseteq Domn(f)$, $(c_2,\infty)\subseteq Domn(g)$. Suppose $\lim_{x\to\infty}f(x),\lim_{x\to\infty}g(x)$ exist. Prove that $\lim_{x\to\infty}[f(x)g(x)]$ exists and $\lim_{x\to\infty}[f(x)g(x)]=\lim_{x\to\infty}f(x)\lim_{x\to\infty}g(x)$.
 - (b). Let $f(x) = \frac{6x^3 + 3x^2 + 4x + 2}{35x^3 + 36x^2 + 34x + 15}$ for each x > 0. Show that $\lim_{x \to \infty} f(x) = \frac{6}{35}$.

[25 Marks]

5. (a). Let $g(x) = \frac{x^2 + 3x + 1}{x^2 + 7}, x \in (1,5)$.

Prove that g(x) is continuous at 3.

(b). Let
$$f(x) = \begin{cases} x^3 + x + 2, & x \ge 3\\ 15, & x < 3 \end{cases}$$
.

- (i). Prove that f is right-continuous at 3.
- (ii). Prove that f is not continuous at 3.

[25 Marks]

- 6. (a). Suppose f is a function defined on an interval I and f is uniformly continuous on I.

 Prove that f is continuous on I.
 - (b). Let f(x) = 2x + 3, $x \in \mathbb{R}$. Show that f is uniformly continuous on \mathbb{R} .

[25 Marks]