The Open University of Sri Lanka Faculty of Natural Sciences B.Sc Degree Programme

Department

: Chemistry

Level

: 5

Name of the Examination

: Final Examination

Course Title and Code

: CYU5301 - Concepts of Spectroscopy

Academic Year

: 2023/2024

Date

: 16.10.2023

Time

: 9.30 a.m. - 11.30 a.m.

Duration

: 2 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of four (04) questions in five (05) pages.
- 3. Answer all parts of all questions. All questions carry equal marks.
- 4. Answer for each question should be started on a fresh page.
- 5. Answers to all parts of any question should be written together.
- 6. Draw fully labelled diagrams where necessary.
- 7. Involvement in any activity that is considered as an examination offense will lead to punishment.
- 8. Use blue or black ink to answer the questions.
- 9. Clearly state your index number on all pages of your answer script.
- 10. Use of non-programmable calculators will be allowed.
- 11. Mobile phones and other electronic equipment are not allowed. Switch off and leave them outside.
- 12. A list of constants and equations are provided overleaf for your reference.

(ii) State the selection rule in <u>pure vibrational</u> spectroscopy of the molecule. State why this rule is not obeyed by the vibrational transitions between different electronic states.

(20 marks)

c. Determine all possible electronic state/s arising out of the following electronic configuration of a particular exotic heteronuclear diatomic molecule/ion.

$$(\sigma ls)^{2} (\sigma^{*} ls)^{2} (\sigma 2s)^{2} (\sigma^{*} 2s)^{2} (\sigma 2p)^{2} (\pi 2p)^{4} (\pi^{*} 2p)^{3}$$

(10 marks)

Question 4

(a)

- (i) Briefly describe how Stokes and anti-Stokes lines in a Raman spectrum originate.
- (ii) Answer the following questions based on the expected Raman spectra of a (hypothetical) molecule having only two energy levels at two different temperatures, T_1 and T_2 , which are shown in the figure. The separation between the two energy levels is ΔE and ν_0 is the frequency of the radiation used in recording the spectrum.

- a) Giving reasons identify the Stokes and anti-Stokes lines in the above-mentioned spectra.
- b) Giving reasons identify the higher temperature out of T_1 and T_2 .
- c) Deduce the relationship between v_1 and v_2 in terms of ΔE .
- d) Deduce the relationship between v_1 and v_3 in terms of ΔE .
- e) Deduce the relationship between v_2 and v_4 .

(50 marks)

(b)

Pure rotational Raman spectrum of a molecule (which behaves as a rigid rotor) is schematically represented in the figure. There, α and β are the Raman shifts of the lines A and B respectively and $\alpha = -120$

- (i) State the specific selection rule in pure rotational Raman spectroscopy.
- (ii) Starting with the expression for rotational energy levels of the diatomic molecule derive an expression for α in terms of the rotational constant.
- (iii) Determine the rotational constant of the diatomic molecule.
- (iv) Determine β .

(50 marks)

------ End of examination paper -----