The Open University of Sri Lanka
Department of Mathematics
Advanced Certificate in Science Programme
MYF2521/MHF2521 - Combined Mathematics 3 - Level 2
Final Examination 2023/24

Date: 02-09-2023

From: 09:30 am. To 12:30 pm.

Answer All Questions in Part A and Answer Five Questions in Part B.

PART A

- 1. Using the Principle of Mathematical Induction, prove that $23^n 1$ is divisible by 11 for all positive integers n.
- 2. Show that $\frac{1}{r^2} \frac{1}{(r+1)^2} = \frac{2r+1}{r^2(r+1)^2}$. Hence find $\sum_{r=1}^n \frac{2r+1}{r^2(r+1)^2}$.
- 3. A committee of 5 students to be chosen from 6 boys and 9 girls. Find the number of ways that this can be done if
 - (a) there are no restrictions on the choice of students for the committee.
 - (b) the committee must include 3 boys and 2 girls.
 - (c) the committee should have more girls than boys.
- 4. Using the binomial expansion for a positive integer index, show that $(3+\sqrt{5})^5+(3-\sqrt{5})^5$ is an even number.
- 5. (a) Describe the locus represented by the complex equation $Arg(z-4) Arg(z) = \frac{\pi}{3}$.
 - (b) Write the cartesian equation equivalent to the complex equation |z-2+i|=3.
- 6. If $A = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix}$, find the matrices X, Y and Z such that
 - (a) $X = B^2 + 2A$.
 - (b) AY = B.
 - (c) ZA = B.

7. Evaluate the following limits.

(a)
$$\lim_{x \to -2} \frac{x^4 - 16}{x^3 + 8}$$

(b)
$$\lim_{x \to 0} \frac{\sin 7x}{\sin 2x}$$

(c)
$$\lim_{x \to \infty} \frac{2x^3 + 3x^2 - 1}{3x^3 + x + 1}$$

- 8. A curve C is given by the parametric equation $x = \sec^3 \theta$ and $y = \tan^3 \theta$. Show that $\frac{dy}{dx} = \sin \theta$. Find the equation of the tangent at the point corresponding to the parameter $\theta = \frac{\pi}{4}$.
- 9. Find the area of the region on the rectangular Cartesian plane enclosed by the curves $y = (x 1)^2$ and $y = 2 (x 1)^2$.
- 10. The circle C has equation $x^2+y^2-10x+4y+11=0$. Find the coordinates of the centre and radius of C. Given that the line y=3x+k, where k is a constant, is a tangent to the circle. Show that $k=-17\pm6\sqrt{5}$.

PART B

11. (a) Verify that
$$\frac{2r-1}{r(r-1)} - \frac{2r+1}{r(r+1)} = \frac{2}{(r-1)(r+1)}$$

Hence, using method of differences, prove that $\sum_{r=1}^{n} \frac{2}{(r-1)(r+1)} = \frac{3}{2} - \frac{2n+1}{n(n+1)}$

Find the sum to infinity of this series and find whether the series is convergent.

(b) If
$$x + \frac{1}{x} = 1$$
 find the values of (i) $x^5 + \frac{1}{x^5}$ and (ii) $x^7 + \frac{1}{x^7}$.

- 12. (a) The complex numbers $z_1 = \frac{5-10i}{2-i}$ and $z_2 = -5i$ are represented in the Argand diagram by the points A and B. The point O denote the origin.
 - (i) Mark z_1 and z_2 in the Argand diagram.
 - (ii) Find the lengths of OA, OB and AB.
 - (iii) Prove that the triangle OAB is isosceles.
 - (iv) Find the angle AOB.
 - (b) If $z = \cos \theta + i \sin \theta$, for positive values of n, show that $z^n + \frac{1}{z^n} = 2 \cos n\theta$ and $z^n - \frac{1}{z^n} = 2i \sin n\theta$.

Hence, show that

$$\cos 5 \theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$$
 and
 $\sin 5 \theta = 16 \sin^5 \theta - 20 \sin^3 \theta + 5 \sin \theta$.

13. (a) Differentiate following functions with respect to x.

(i)
$$y = (2x^2 + 1)(3x^3 + 7x^2 + 2)$$

(ii)
$$y = \frac{\cos x}{\sqrt{\cos x + \sin xx}}$$

(iii)
$$y = \ln[\sec 3x + \tan 3x]$$

(iv)
$$y = (\cos x)^{\sin x}$$

- (b) If $x = e^t \sin t$ and $y = e^t \cos t$ then show that $\frac{dy}{dx} = \frac{y-x}{y+x}$.
- 14. (a) Find the stationary points of the curve $y = \frac{x-1}{(x-2)(x+3)}$ and determine whether they are relative maximum points, relative minimum points or points of inflexion.

Hence, sketch the graph of the function

(b) A right circular cone of semi-vertical angle θ is circumscribed about a sphere of radius R. Show that the volume of the cone is

 $V = \frac{1}{3}\pi R^3 (1 + \csc \theta)^3 \tan^2 \theta$ find the value of θ when V is minimum.

- 15. (a) Prove that $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx = \int_0^{\frac{\pi}{2}} \frac{1}{1+\cos x} dx$. Hence, evaluate $\int_0^{\frac{\pi}{2}} \frac{1}{1+\cos x} dx$.
 - (b) Evaluate following integrals.

(i)
$$\int \frac{2x+4}{(x-2)(x^2+4)} dx$$

(ii)
$$\int \frac{\left(\tan^{-1}x\right)^3}{1+x^2} dx$$

- (iii) $\int e^x \cos x \, dx$
- 16. (a) Find the volume generated, when the part of the curve $y = x^2$ in the interval $1 \le x \le 2$ is rotated by four right angles about the x-axis.
 - (b) Matrix A is given by $A = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$.
 - (i) Find A^2 .
 - (ii) Find a and b such that $A^2 = aA + bI$.
 - (iii) Find A^{-1} .
- 17. If the circles $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ intersect orthogonally show that $2g_1g_2 + 2f_1f_2 = c_1 + c_2$.

Let $S_1 = x^2 + y^2 - 2x - 6y + 2 = 0$ and $S_2 = x^2 + y^2 - 5x - 8y + 3 = 0$. Find the equation of the circle through the origin which passes through the points of intersection of the two circles S_1 and S_2 . Show that this circle intersects the given circle S_1 orthogonally.