THE OPEN UNIVERSITY OF SRI LANKA

Faculty of Engineering Technology
Department of Mathematics & Philosophy of Engineering

Bachelor of Technology Honors in Engineering / Bachelor of Software Engineering Honors

087

Final Examination (2021/2022) MHZ5355 / MHZ5375: Discrete Mathematics

Date: 23rd February 2023 (Thursday)

Time: 09:30 - 12:30

Instruction:

- Answer only five questions.
- Please answer a total of five (05) questions choosing at least one from each single section.
- All symbols are in standard notation and state any assumption that you made.

SECTION - A

Q1.

i. Prove the following statements using Mathematical induction.

a) $6^n - 5n + 4$ is divisible by 5 for all $n \ge 1$;

[20%]

b) $\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2)$ for all $n \ge 1$.

[20%]

ii. Let a, b, and c be any integer numbers. Prove that,

a) if c|a and c|b, then c|(2c-3a+7b),

[10%]

b) if a|b, and b|a then $a = \pm b$,

[10%]

iii.

a) Let a, b are integers and gcd(a, b) = 1. Show that gcd(a + b, a - b) = 1 or 2. [15%]

[1570]

b) Find the gcd(12378, 3054), and find the integers x, y such that gcd(12378, 3054) = 12378x + 3054y by using the Euclidean Algorithm.

[15%]

c) Determine all integer solutions of the following Diophantine equation:

$$12378x_0 + 3054y_0 = 90.$$
 [10%]

- i. Let a, b, c and d be integers. Let n and m be a positive integer.
 - a) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then show that $a \equiv c \pmod{n}$; [15%]
 - b) If $a \equiv b \pmod{n}$ and $m \mid n$, then show that $a \equiv b \pmod{m}$; [15%]
 - c) Prove that $a \equiv b \pmod{m}$, $b \equiv a \pmod{m}$ and $a b \equiv 0 \pmod{m}$ are equivalent statements. [15%]
 - d) If $a \equiv b \pmod{n}$ and $a \equiv c \pmod{m}$, then prove that $b \equiv c \pmod{k}$ where the integer $k = \gcd(n, m)$. [15%]
- ii. Solve the following system of congruence:

[40%]

 $2x \equiv 1 \pmod{5}$

 $3x \equiv 9 \pmod{6}$

 $4x \equiv 1 \pmod{7}$

 $5x \equiv 9 \ (mod \ 11).$

SECTION - B

Q3.

- i. Determine whether the operations "*": Z × Z → R defined below are binary operation or not. Prove your answer if "*" is a binary operation, explain the reason if "*" not a binary operation.
 - a) $x * y = \sqrt{xy}$;
- $x, y \in \mathbb{Z}$,
- b) $x * y = x^2 y^2$;
- $x, y \in \mathbb{Z}$,
- c) $x * y = \frac{x+y}{x-y}$;
- $x, y \in \mathbb{Z}$ and $x \neq y$.
- ii. Let A be set of real numbers with the operation " * " defined by x * y = x + 2xy.
 - a) Is this operation associative?
 - b) Is this operation commutative?

Justify your answer.

[25%]

iii. Define an abelian group (G, *) in usual notation.

Let G be the subset of \mathbb{Z} with respect to the binary operation " * " defined by

a * b = a + b + 3 for all $a, b \in G$.

[45%]

- a) Show that (G_{i}^{*}) is a group.
- b) Is the group (G,*) Abelian? Justify your answer.

- i. Define a semi-group (G, #) in usual notation. Let operations "#": $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, defined as follows.
 - a) " $a \# b = a^b$ " for all $a, b \in \mathbb{R}$;
 - b) "c # d = 3(c + d)" for all $c, d \in \mathbb{R}$;
 - c) " $e \# f = \sqrt{ef}$ " for all $e, f \in \mathbb{R}^+$.

Verify that where $(\mathbb{R}, \#)$ a semi-group or not for each of the above cases. [45%]

- ii. Let $R = \{0, 1, 2, 3, 4, 5, 6\}$ be a group under the operation $\oplus 7$. The operation $\oplus 7$ is defined by $a \oplus 7b = r$ and $0 \le r \le 6$, where r is the non-negative remainder when ordinary addition a+b is divided by 7. [25%]
 - a) Determine the identity element of R.
 - b) Determine the inverse of each element $a \in R$.
- iii. Define a homomorphism for group in usual notation. [30%] Let $A = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z} \}$ be a group under matrix multiplication.

Let $H: A \to \mathbb{Z}$ be defined by $H \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$.

Prove that H is a homomorphism of A on to \mathbb{Z} .

SECTION - C

Q5.

i. Determine which of the following are simple, by drawing each of them.

a)
$$H_1 = \{V_1, E_1\}$$
 where $V_1 = \{1, 2, 3, 4, 5, 6, 7\}$ and $E_1 = \{\{x, y\}, 3x + 2y \text{ is odd and } x > y\}$ [10%]

- b) $H_2 = \{V_2, E_2\}$ where $V_2 = \{2, 3, 4, 5, 11, 12, 13, 14\}$ and "s" and "t" are ajacent if and only if gcd(s, t) = 1 and s > t. [10%]
- c) $H_3 = \{V_3, E_3\}$ where $V_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $E_3 = \{\{m, n\}: m \times n \text{ is a divisible of 5 and } m \leq n\}.$ [10%]
- ii. Let G be a graph of 12 vertices and 17 edges, and x, y, z denoted by the number of vertices in G of degree 2,3 and 4 respectively. Assume that $y \ge 3$. Find all possible answers for (x, y, z).

iii. G is the graph whose adjacency matrix M is given by

$$M = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}.$$

a) Without drawing a graph of G, explain whether G is connected or not.

[15%]

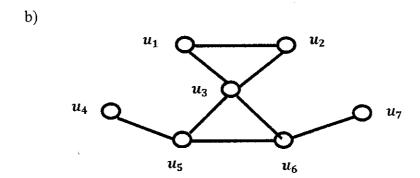
- b) If $V(G) = \{a, b, c, d\}$ then find the number of paths of length four joining vertices a and c. [10%]
- c) Draw the graph of an adjacency matrix M. [05%]
- iv. What is the largest possible number of vertices in a graph with 2022 edges if all vertices have degree at least four? [15%]

Q6.

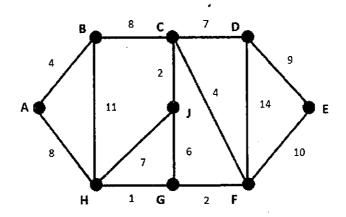
i. Determine whether following graph are Eulerian or not. Which of them are Hamiltonian? Justify your answers.

[20%]

a) v_1 v_2 v_3 v_4 v_5



ii. Use Dijkstra's algorithm to find the shortest route between node A and every other node in the following network. [60%]



iii. Draw a tree following case:

[20%]

"Twelve vertices exactly four of which has degree two".

SECTION - D

Q7.

i. Iterate the Eco-system growth given by the relation $t_{n+1} - \lambda t_n = 0$ starting with $t_0 = 0.3$, taking $\lambda = 0.5$ and $\lambda = 1.5$, and draw the diagrams. Hence deduce t_n as $n \to \infty$.

(At least 5 iteration steps are necessary)

[20%]

ii. Iterate the Eco-system growth model relationship $y_{n+1} = 1.8 y_n (1 - y_n)$, were $y_0 = 0.3$, obtain the convergent value of the model. (Up to 4 decimal places probably) [20%]

iii. Consider the iterations given by $Z_{n+1} = Z_n^2$ and suppose that $Z_0 = (1.2 + i \ 0.5)$. Find Z_5 and draw the graph of the iteration.

[10%]

iv. Suppose a system with two unknowns x and y, is modeled in the form of a system of differential equations

$$\frac{dx}{dt} = 5x + 2y$$
$$\frac{dy}{dt} = 3x + 6y$$

with initial conditions x = 3 and y = 2 when t = 0.

Find the space values (x_t, y_t) .

[50%]

- i. Let $L = \{1, 12, 21\}$ and $M = \{21, 212, 121\}$ be languages. Find the concatenations LM and ML. [20%]
- ii. Suppose $L(G) = \{a^m b^n \mid m > 0 \text{ and } n \ge 0\}$. Find out the grammar G which produces L.
- iii. Show that the string $\{a^nb^mc^md^n|n>0, m>0, n\neq m\}$ is a sentence generated by the grammar and starting symbol S and production P. [20%] $P=\{S\to aSb,\ S\to aTb,\ T\to cTd,\ T\to cd\}$.
- iv. Let $M = \{S, I, \delta, S_0, F\}$ be a Non-Deterministic Finite Automata (NDFA). Where S is a finite set of states, I is a finite set of input symbols, δ is the transition function, A is the initial state, and F is the set of final states. Transition Table for the above Non-Deterministic Finite Automata as follows:

States	Inputs		
	a	b	c
Α	{B, E}	{A}	_
В	{B}	{C}	{A}
С	*	{C}	{D}
D	{D}	{D}	·
Е	•	{C, F}	{A}
F	{F}	-	{F}

The initial state is A, and the set of final states is $\{D, F\}$.

a) Depict the finite automaton's transition graph.

- [10%]
- b) Show that the string *aacabca* is accepted by the Non-deterministic Finite Automaton by applying the transition function. [30%]