The Open University of Sri Lanka Faculty of Engineering Technology Department of Civil Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: CVX7242 - Environmental Engineering Design

Academic Year

: 2021/2022

Date

: 20th February 2023

Time

: 0930-1230hrs

Duration

: 3 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Seven (7) questions in Six (6) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Relevant charts / codes / equations are provided in last page
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear handwriting.
- 8. Do not use red colour pen.

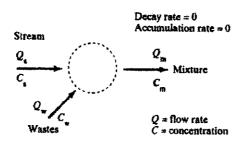
1

Question 1

- (a) Sizing of units based on unit operations means the determination of capacity (volume) and the dimensions of the treatment tanks.
 - (i) A treatment system consists of circular settling unit. For the design average rate of 6ML/d and for the minimum detention time of 4 hours, what would be the capacity of the tank.
 - (ii) If the maximum overflow rate is $20m^3/m^2/d$, determine the required diameter of the tank and the side water depth, SWD.

[07 marks]

(b)


- (i) What are the three major components of a distribution system which needs to consider during the designing.
- (ii) List three requirements of good distribution system
- (iii) Discuss the problems that can be occurred in the distribution systems.
- (iv) What is meant by 'NRW' or Non-Revenue Water. Describe briefly how the losses are occurred.

 [08 marks]
- (c) A small town has 32,000 of population and an average per capita water demand is 500L/d. Assuming that the need for equalizing storage is 20% of the average daily demand and that storage for a fire flow of 60L/s for a 4h duration is required, compute the required volume of a distribution storage tank for the town.

[05 marks]

Question 2.

(a) In a steady-state conservative system, pollutants enter and leave the region at the same rate.

- (i) Assuming steady-state conditions, write mass balance equation for the above system.
- (ii) An urban stream flowing at 20.0 m³/s has a tributary feeding into it with a flow 2.0 m³/s. The tributary Nitrate concentration of 24mg/L, while the same pollutant concentration at the upstream of the junction is 1.5 mg/L. Assuming nitrate as a conservative substance, and assuming complete mixing of the two streams, find the downstream nitrate concentration.

[07 marks]

(b)

- (i) In a narrow and deep settling tank more effective in removing suspended solids than a wide and shallow tank? Explain your answer.
- (ii) Compute the required volume of a sedimentation tank that provides 3h of detention time for a flow of 10ML/d. If the tank is 10m by 25m in plan dimensions, how deep is the water in the tank?

[06 marks]

(c)

- (i) Explain what is meant by 'short-circuiting' in a sedimentation tank. Briefly explain the reasons for the occurrence of short-circuiting.
- (ii) Compute the minimum design velocity, in meters per seconds (m/s) of suspended particles that can be completely removed in a sedimentation tank. The overflow rate 40 m³/m²/d.

[07 marks]

Question 3.

- (a) Wastewater generation and its characteristics are fluctuating from a town to town and from a community to a community.
 - (i) List the factors that effect on wastewater characteristics.
 - (ii) A combined wastewater flow from a community consists of 200gpcd from 7500 persons, 65000 gpd from a milk processing plant with BOD 1400 mg/L, and 40,000 lpd containing 225Kg of BOD from dry fruit manufacturing factory. Calculate the combined wastewater flow, BOD concentration in the composite waste and BOD equivalent population.

[06 marks]

(b) A wastewater treatment plant has two primary clarifiers, each 20 m in diameter with a 2-m sidewater depth. The effluent weirs are in both channels set on a diameter of 18m. For a flow of 12900 m³/d, calculate the overflow rate, detention time and weir loading.

[05 marks]

(c) Skimming tanks are provided to remove oil, grease, and other small floating materials such as vegetable debris, etc. A kitchen of a 100 rooms hotel produces 500 m³/day of domestic wastewater seek your assistance to improve their wastewater treatment plant.

The hotel management wants to maintain the efficiency of oil and grease removal at 80%. If the oil and grease concentration is 200 mg/l and the proposed detention time is 20 minutes, design the capacity of the skimming tank.

- (i) Compute the Oil and grease concentration of the effluent.
- (ii) If surface load is 250 m2/m3/s, what would be the surface area of the tank?
- (iii) Assuming the length to width ratio is 3:1, calculate the skimming tank's length and width.
- (iv) Providing a freeboard of 0.5 m, determine the depth of the tank and the design summary (dimensions) of the tank.

[09 marks]

Question 4.

(a)

(i) Differentiate 'dry well' and 'wet well'.

(ii) What are the significant factors that are considered in the design of a pump house?

(iii) For a small town it is needed to design a rising main.

The design details are as follows.

Peaking factor - 2.5

Daily average flow:15 MLD.

Minimum flow is 40% of the average flow.

Flow through velocity in the rising main:75 m/s

Assume if design data are needed.

[06 marks]

(b) The aeration tank for a completely mixed aeration process is being slzed for a design wastewater flow of $7500\text{m}^3/\text{d}$. The influent BOD is 130mg/L with a soluble BOD of 90mg/L. The design effluent BOD is 20mg/L with a soluble BOD of 7.0 mg/L. Recommended design parameters are sludge age of 10 days and volatile MLSS of 1400 mg/L. Selection of these values taken into account the anticipated variation in wastewater flows and strengths. The kinetic constants from a bench scale treatability study are Y= 0.60 mg VSS mg soluble BOD and k_d =0.06 per day. Calculate the volume of the aeration tank, aeration period, food/Microorganism ratio and the excess biomass in the waste activated sludge.

If required use the following equations with usual notations.

$$\frac{1}{\theta_c^{min}} = \frac{YKS_0}{(K_s + S_0)} - K_c$$

[08 marks]

- (c) Attached growth biological system employed for wastewater treatment essentially consists of a reactor with some kind of medium to support the growth of biomass on it.
 - (i) List four types of Attached growth systems
 - (ii) Explain the removal mechanism briefly.

[06 marks]

Question 5.

(a) A conventional activated sludge system treats 11,000 m³/d of wastewater with a BOD of 180 mg/L in an aeration tank with a volume of 3400m³. The Operating conditions are an effluent suspended solid of 20mg/L, an MLSS concentration maintained in the aeration tank of 2500 mg/L, and an activated – sludge wasting rate of 160m³/d containing 8000 mg/L. Using the above data, calculate the aeration period, volumetric BOD loading, F/M ratio and sludge age.

[10 marks]

(b) State the two main reasons why an activated sludge system is operated at a relatively low food/microorganism ratio. What happened if the F/M ratio is high (>1) in the system?

[03 marks]

(c)

- (i) Define Sludge Volume Index (SVI) and explain its use in the design and operation of an activated sludge plant.
- (ii) An aeration system with a hydraulic retention time of 4hour receives a flow of 3ML/d at a BOD of 440 mg/l. The MLSS concentration in the aeration tank is 3,500 mg/l. The effluent BOD is 20 mg/l. Calculate, the volume of the aeration tank.
- (iii) What is the SVI of the system.

[07 marks]

Question 6.

(a)

- (i) Describe the role of algae in biological stabilization of wastewater in a stabilization pond.
- (ii) Calculate the surface area required for a stabilization pond to serve a domestic population of 1000. Assume 180 lpcd at 210 mg/l of BOD. Use a design loading of 0.1kg of BOD/m²/day. If the average liquid depth is 0.6 m, calculate the retention time of the wastewater based on influent flow. The effluent is spread on grassland by spray irrigation at a rate of 10cm/week. Compute the land area required for land disposal. In these computations assume no evaporation or seepage losses from the ponds.

[08 marks]

(b)

- (i) How Landfills and open dumps are contributing for global warming? Explain briefly.
- (ii) What elements to be included in the landfill design and construction that permit control of leachate and gas?

[05 marks]

(c)

- (i) What is meant by 'Integrated Solid Waste Management'? How it helps to manage solid waste specially in a small city?
- (ii) What is known as a Life Cycle Analysis (LCA). How it helps pollution prevention. Explain briefly.
- (iii) What do you understand by Circular Economy'. What aspects of circular economy can apply for solid waste management and net zero carbon in future. Discuss.

[07 marks]

Question 7.

(a)

(i) A stack at a power station has an emission exiting at 3.5 m/s through a stack diameter of 3 m. The average wind speed is 15 m/s. The temperature at the top of the stack is 300°C, and the temperature of the emission is 1850 °C. The atmosphere is at neutral stability. What is the expected rise of the plume?

For stable condition, S=g/T_o(Δ T_o/ Δ Z + 0.01) C/m ; Δ H =2.4 {F/US}^{1/3}

(ii) A stack gas contains Carbon Monoxide (CO) at a concentration of 10% by volume. What is the concentration of CO in $\mu g/m3$? (Assume 25 °C and 1 atmospheric pressure)

[08 marks]

(b)

- (i) The level of noise can be reduced by using one of three strategies. Explain briefly.
- (ii) Briefly explain the measures that you are taken to reduce the traffic noise,
 - A. At a roadside
 - B. At a highway (Express way)

[06 marks]

(c) An air pollution control device is to remove a particulate that is being emitted at a concentration of 125,000 μ g/m³ at an air flow rate of 180 m³/s. The device removes 0.48nmetric ton per day. What are the emission concentration and the collection recovery?

[06 marks]

----XX-----