The Open University of Sri Lanka Faculty of Engineering Technology Department of Mechanical Engineering

022

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: DMX6306 Micro/ Nano Electromechanical Systems

Academic Year

2021/22

Date

: 12th February 2023

Time

0930 hours -1230 hours

Duration

: 3 hours

General instructions

1. Read all instructions carefully before answering the questions.

- 2. This question paper consists of Eight (08) questions in Four (04) pages.
- 3. Answer any Five (05) questions.
- 4. Answer for each question should commence from a new page.
- 5. This is a Closed Book Test (CBT).
- 6. Answers should be in clear handwriting.
- 7. Do not use Red colour pen.

(a) A cylindrical silicon rod is pulled on both ends with a force of 10 mN. The rod is 1 mm long and in diameter. Find the stress and strain in the longitudinal direction of the rod.

[08 marks]

(b) A suspended beam shown in the Figure Q01 diagram below is under a force of $F(F=10\mu\text{N})$. Find the vertical displacement at the end of the beam, assuming the flexural bending of the cantilever beam is negligible. The dimensions of the beam are $L=40\mu\text{m}$, $l=200\mu\text{m}$, and $w=5\mu\text{m}$, $t=2\mu\text{m}$. The beam material's Young's Modulus of is E=150GPa. The Poisson's ratio of the beam material is 0.3.

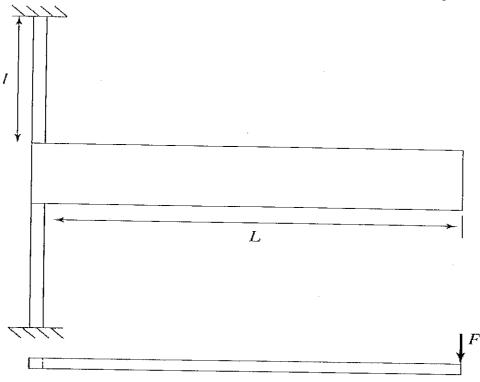


Figure Q01: A torsional supported cantilever

Question 02 - (20 Marks)

- (a) Derive a scaling law for the ratio of surface area and the volume of a cube and discuss the consequences for MEMS design.

 [06 marks]
- (b) Explain the importance of the Reynolds number with respect to the scaling of the fluidic system.

 [04 marks]
- (c) Given a cube of dimension, d, on a side and density, ρ_c , floating in a liquid of surface tension, σ .
 - i. Calculate the cube dimension, d at which surface tension force is greater than the cube weight.
 [05 marks]
 - ii. The cube is made of silicon (ρ_c = 2300 kg/m³) and the liquid is water (σ =0.072 N/M). What is the cube dimension from part (a)? [05 marks]

Question 03 - (20 Marks)

- (a) Briefly explain the two types of substrate materials used in MEMS materials. [06 marks]
- (b) i) In the context of using piezo resistivity to sense strain, what are the advantages/disadvantages of using silicon vs. silicon nitride for pressure sensor diaphragms? How does residual stress affect the sensitivity?

 [08 marks]
 - ii) Describe five methods you could implement to prevent stiction between surface micromachined components. [06 marks]

Question 04 - (20 Marks)

- (a) i) Why is silicon a desirable work material in microsystem technology? [02 marks]
 ii) Differentiate between bulk micromachining and surface micromachining. [05 marks]
 iii) Explain the importance and advantages of LIGA. [05 marks]
- (b) The Discuss the general compatibility between three sacrificial materials (CVD oxide, photoresist and metal) and three structural materials (CVD polysilicon, CVD silicon nitride, metal). How many pairs are viable structural-sacrificial material combinations in a two-layer process?

 [08 marks]

Question 05 - (20 Marks)

Explain the operation principles of the following actuations in MEMS systems.

- Electrothermal Actuation
- Piezoelectric Actuation
- Electromagnetic Actuation
- Shape Memory Actuation

[4 X 05 marks]

Question 06 - (20 Marks)

(a) Identify some of the present and future products associated with NEMS systems.

[05 marks]

(b) Explain, why biology is so closely associated with nanoscience and nanotechnology.

[05 marks]

(c) i) What are the two basic categories of approaches used in nanofabrication?

[05 marks]

ii) Briefly explain the lithography techniques used in nanofabrication.

[05 marks]

Question 07 - (20 Marks)

- (a) i) What are the NEMS attributes?

 [03 marks]

 [05 marks]
- ii) Briefly explain three of them.

 (b) i) State the types of NEMS based materials.

 [03 marks]

 [04 marks]
 - ii) Identify the significance of NEMS based materials. [03 marks]
- (c) Briefly explain the applications of Carbon Nanotubes and Carbon Fullerenes.

[05 marks]

Question 08 - (20 Marks)

(b)	Explain the two types of vapor deposition techniques. i) What is self-assembly in nanofabrication? ii) How is nano-imprint lithography different from micro-imprint lithography	[05 marks] [03 marks] 1?
(c)	i) What are the types of actuation methods of NEMS systems?ii) Briefly explain three of them.	[04 marks] [03 marks] [05 marks]

ALL RIGHT RESERVED