The Open University of Sri Lanka
Faculty of Engineering Technology
Department of Electrical and Computer Engineering

Study Programme - Bachelor of Software Engineering in Honours
Name of the Examination : Final Examination '
Course Code and Title : EEX6363 Compiler Construction

Academic Year 12021722
Date : 17t February 2023
Time - 14:00 — 17:00 hrs.
KDuration : 3 hours /
General Instructions

Read all instructions carefully before answering the questions.

This question paper consists of four (4) questions in four (4) pages.
Answer all questions in Section A and any TWO questions from Section B.
Answer for each question should commence from a new page.

Answers should be in clear handwriting and do not use Red colour pen.
Clearly state your assumptions, if any.

This is a Closed Book Test (CBT).

N

1 of 4



Q1

Section A — Answer all questions [60 marks]

The following section presents the description of a language, called MulCale for
multiplymng numerical values.

MulCale is a very simple language that accommodates two forms of numerical
data types (double and integer), allows computation and printing of numerical
values, and offers a small set of variable names to hold the results of
computations. As most programming languages, the conversion from integer
type to double type is accomplished automatically in MulCale. The production
rules for the grammar of this language are given below.

1S > dcls stmis §
2 dels 2 dcldcls
3 | €
4 del = intdcl id
5 i doubledcl id
6 stmts 2 stmt stmis
7 | ¢
8 stmt 2 id assign val expr
9 | printid
10 val > id
11 | intnum
12 | doublenum
13 expr 2 mulval expr
14 | divval expr
15 ] e

Wwhere S is the start symbol, ¢ denotes the empty string and the special symbol $
1s a terminal which represents the end of the input stream.

The specification of tokens in MulCale is accomplished by associating a regular
expression with each token, as shown below.

Terminal Regular Expression
intdcl i

doubledcl d

print P

id [a=c]|[e~h]| [~ o] |[q -7
assign =

mul X

div /

intnum [0-9]"

doublenum  [0—9]%.[0-9]F
blank (T

2 of4



(a) Define the grammar for the given language MulCale by clearly stating the terminals
and non-terminals. [06)
(b) Write the input stream for this language that satisfies the following requirement.
Y our input stream should be syntactically valid. : [10]
“Declare two numbers, the first one is integer hpe and second one is
double type, then assign values and getting the multiplication of two
assigned values, finally print the result”
Note: the sequence of the data type is important. |
(c) Validate the input streatmn written in (b) using the grammar of MulCalc. [10]
(d) Construct the non-deterministic finite automata for the input obtained in (b). [06]
(e) Draw the parse free for the input stream written in (b). [08]
(f) Draw the abstract syntax tree (AST) for the parse tree obtained in {€). Choose
whatever variables and numerical values from the given specification of tokens. [08]
(g) Re-draw the AST drawn in (f) after applying semantic analysis. [04]
(h) Write LEX implementation syntax for the language MulCale. [08]
Section B — Answer any TWO questions [40 marks]
Q2  Four production rules (R1 to R4) for a specific granumar are given by
R1: ECTR ~> NEST id NEST num
R2: FCTR > LIST aumLIST id
R3: NEST = ¢
R4: LIST =2 ¢
where CAPITAL terms are non-terminals (three) while all others are terminals, and the
starting term is FCTR.
() Construct the FIRST and FOLLOW sets for the grammar above. [03]
(b) Construct the LL(1) top-down predictive parsing table for this grammar. 106]
(c) Using the definition of LL(1), explain why the grammar is or not LI(1). [03]
“(d) Convert the given grammar into Chomsky normal form. | - [08]

3of4



Q3

(a) Explain, two differences between top-down and bottom-up parsing methods.

(b) State, what is an LR(0) item.

(¢) Construct an SLR parsing table for the grammar below:

S>L=R|R
L= *R}id
R>L

where S, L and R are non-terminals while all others are terminals.

(d) Explain, whether the given grammar in (c) is SLR(1) type or not.

Q4
(a) Explain the followings briefly:

i} Any two factors affecting code generation phase.
ii)  With an example, what is mean by three-address code representation?
i1} Importance of the symbol table manager and error handler in a compiler.

iv)  Why we need a code optimization in a compiler?

(b) Optimize the following code-segment written in C language:

Note: assume that this code-segment is perfectly executed.

mtj, x,y,r;
x=0;
y=1
=1,

for (j=0;j <=N; j++)
{
x=({+D*¥E+D G+ D *x+H (@ *alb)*j;

X=xX+1*Yy;

— End —

4 of4



