The Open University of Sri Lanka

B.Sc./B.Ed. Degree/Continuing Education Programme – Level 04

Open Book Test (OBT) – 2024/2025

Applied Mathematics

ADU4302/ADE4302- Vector Calculus

Duration:- One Hour

Date:- 30-08-2024

Answer All Questions.

- 1. (a) Find the domain and range of the function $f(x,y) = \frac{1}{\sqrt{x^2 + y^2 4}}$.
 - (b) Sketch the level curves of the function $f(x, y) = x^2 + y^2 + 2x + 2y$.
- 2. Evaluate the following limits, if they exist:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^4-4y^4}{x^2-2y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{2xy}{3x^2+y^2}$$

3. If
$$w = f\left(\frac{r-s}{s}\right)$$
 then show that $r\frac{\partial w}{\partial r} - s\frac{\partial w}{\partial s} = 0$.

- 4. Let $w(x, y, z) = x^2 + y^2 + z^2$, where $x = \cos t$, $y = \sin t$ and $z = e^t$. Express w as a function of t and find $\frac{dw}{dt}$ directly. Then find $\frac{dw}{dt}$ using the Chain rule.
- 5. Find the directional derivative of the function $f(x,y) = 5 2x^2 \frac{1}{2}y^2$ at the point P(3, 4) in the direction of $\underline{u} = \cos \frac{\pi}{4} \underline{i} + \sin \frac{\pi}{4} \underline{j}$.
- 6. Find the equation of the tangent plane to the surface $3xyz = x^3 + y^3$ at the point $P(1, 2, \frac{3}{2})$.
- 7. Find the local extrema of the function $f(x, y) = 120x + 120y xy x^2 y^2$ and determine their nature.