The Open University of Sri Lanka

B.Sc/B.Ed. Degree Programme - Level 04

Open Book Test - 2024/2025

Pure Mathematics

PEU4300 - Real Analysis 1

Duration: - One Hour.

Date: - 07.09.2024

Time: - From 10.30 a.m. to11.30a.m.

Answer All Questions

01) (a) Discuss the boundedness of the following sequences $\langle a_n \rangle$ where a_n is given by

(i)
$$a_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}$$
 ; for each $n \in \mathbb{N}$

(ii)
$$a_n = \frac{1}{n^2} + \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2}$$
; for each $n \in \mathbb{N}$

(b) Prove that $a_n = \sqrt{n+1} - \sqrt{n}$ is a decreasing sequence.

(02) (a) Using the definition of limit, prove each of the following:

(i)
$$\lim_{n \to \infty} \frac{3n^4 + 1}{n^4 + n^2} = 3$$

(ii)
$$\lim_{n\to\infty}\frac{1}{3^n}=0.$$

(b)Let $\langle x_n \rangle$ be a convergent sequence such that $\lim_{n \to \infty} x_n = 1$. Prove that

$$\lim_{n\to\infty} x_n^k = 1 \text{ for each } k \in \mathbb{N}.$$

Does it follow that $\lim_{n\to\infty} x_n^n = 1$? Justify your answer.