The Open University of Sri Lanka B.Sc. (IT) Degree Programme - 2023/2024 Department of Computer Science Level 3 COU3306 - Data Structures and Algorithms No Book Test - 1 (NBT - 1) Duration: One hour only (1 hour) ## **ANSWER ALL QUESTIONS** | (1) | What does it mean by an algorithm? | |------|---| | | | | | | | | | | | | | | | | (2). | . What are the two main factors that should be considered when analyzing an algorithm? | | | ······································ | | | ••••••••••••••••••••••••••••••••••••••• | | | ······································ | | | | | 3). | There are many different methods to design algorithms. Mention three (03) methods used to design an algorithm. | | | ······································ | | | · | | | | | (4). | affecting running time of a program? | |------|---| | | •••••••••••••••••••••••••••••••••••••• | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | (5). | Asymptotic Analysis evaluates the performance of an algorithm in terms of input size. It commonly uses three notations. Name those three (03) notations with names used to measure the running time. | | | | | | ······································ | | | | | | | | (6). | What is a Data Structure? | | | ······································ | | | | | | ••••••••••••••••••••••••••••••••••••••• | | | | | | | | | ······································ | | | ••••••••••••••••••••••••••••••••••••••• | | (7). | List three (03) basic oper | Registration Number: | |-------------|--|--| | | | ······································ | | | | | | | | | | (8). | When selecting a data stru | acture to solve a problem, what are the steps you should | | • / | | , and the property of prop | | | follow? | | | | ••••••••••••••••••••••••••••••••••••••• | | | | | | | | ••••• | ······································ | | | | ······ | | | | | | | | | | | ••••••••••••••••••••••••••••••••••••••• | | | | •••••• | | | | •••••• | | | | • | | | (9). | What is an Abstract Data | Type (ADT)? | | | ······································ | | | | | · | | | | | | | | | | | THE COURSE I AS A REAL TO THE PARTY OF P | | | | •••• | | | | ••••• | ······································ | | | •••••• | ······································ | | | | | | (10). Using Big O notation, determine State any assumptions you made | ne the running time of the following Java code segment. | |---|--| | for(int $i = 0$; $i < n$; $i++$
x = x + 1; | • | | } | | | | | | | | | | | | | | | | ······································ | | | | | | | | $f(n) = n^{8} \text{ if n is even}$ $n^{4} \text{ if n is odd}$ $g(n) = n^{2} \text{ if n is even}$ $n^{6} \text{ if n is odd}$ | | | Consider also that f(n) and g(
Calculate the time complexity | n) are placed sequentially. of both odd n and even n separately. | | | | | ······································ | ••••••••••••••••••••••••••••••••••••••• | | | | | ** | | | | ······································ | | | | | | | | ••••• | | | | | | • | |-----|-----------------------|---|---| | 2). | State | whether the following statements are True or False. | • | | | (i). | There is typically only one correct algorithm for a given problem. | | | | (ii). | The worst-case analysis of an algorithm is used to determine the marequired for completion. | ()
ninimum time | | | (iii). | Growth rates help in comparing the efficiency of algorithms by ignorder terms. | () noring lower | | | (iv). | Operation counts are used to measure the number of instructions exalgorithm. | () xecuted by an | | | (v). | The Product Rule can be used to analyze nested loops in an algorit | ()
hm. | | | | | () | | 3). | brack | n the blanks in each of the following statements. Use the words give | an ingida | | | | tets underneath. vnamic programming, infinite, time, $O(n^2)$, divide and conquer, finite (n^2)) | | | | | tets underneath. namic programming, infinite, time, O(n²), divide and conquer, finit | e, space, | | | O(3 | tets underneath. $(2n^2)$, divide and conquer, finites $(2n^2)$, $(2n^2)$. | re, space, | | | O(3 | tets underneath. vnamic programming, infinite, time, O(n²), divide and conquer, finiten²)) and and methods are because the second conduction. | ee, space, | | | O(3 (i). | tets underneath. Available programming, infinite, time, O(n²), divide and conquer, finite (n²)) and methods are be solve complex problems by breaking them into smaller parts. | te, space, | | | O(3 (i). | rets underneath. In amic programming, infinite, time, O(n²), divide and conquer, finite (n²)) and methods are to solve complex problems by breaking them into smaller parts. An algorithm must consist of a number of it terminates. The efficiency of an algorithm can be measured in terms of | te, space, | | | O(3 (i). | tets underneath. (namic programming, infinite, time, O(n²), divide and conquer, finite(n²)) and methods are be solve complex problems by breaking them into smaller parts. An algorithm must consist of a number of it terminates. The efficiency of an algorithm can be measured in terms of | te, space, | | | O(3 (i). (ii). (iii). | rets underneath. In amic programming, infinite, time, O(n²), divide and conquer, finite (n²)) and methods are to solve complex problems by breaking them into smaller parts. An algorithm must consist of a number of it terminates. The efficiency of an algorithm can be measured in terms of | ne, space, noth used to steps to ensure | *** All Right Reserved. ***