The Open University of Sri Lanka
B.Sc. (IT) Degree Programme - 2023/2024
Department of Computer Science
Level 3
COU3306 - Data Structures and Algorithms
Final Examination - 2023/2024
Duration: Two hours only (2 hours)

Date: 16.12.2024 Time: 9.30 a.m. – 11.30 a.m.

There are six (06) questions on the paper and answer FOUR (04) questions ONLY.

Question 01

- 1) Distinguish between the following concepts.
 - (a) The Big-Oh, Big-Omega and Big-Theta notations used in algorithm analysis
 - (b) Linear and Non-linear data structures
 - (c) Array List and Linked List in Java

[7 marks]

2) The following Java method is used to perform an operation on a data structure.

```
public void function(Node x) {
    if (head == null || x == null) {
        return;
    }
    if (head == x) {
        head = x.next;
    }
    if (x.next != null) {
            x.next.prev = x.prev;
    }
    if (dxel.prev != null) {
            x.prev.next = x.next;
    }
}
```

Answer the following questions.

- (a) Identify and write the data structure this method belongs to.
- (b) Which type of implementation is used to create the data structure mentioned in (a)?
- (c) What type of operation is performed using the above method?

[3 marks]

- 3) Perform the following operations on a binary search tree.
 - (a) Construct a binary search tree for the following set of integers.

- (b) Provide the output when you traverse the constructed binary search tree in the following orders?
 - (i) Pre-Order
 - (ii) In-Order
 - (iii)Post-Order
- (c) Determine the depth of the constructed binary search tree.
- (d) Identify the non-leaf nodes with a single child in the constructed binary search tree?

[12 marks]

- 4) Answer the following questions related to memory management in Java.
 - (a) Describe garbage collection.
 - (b) Analyze the memory allocation process performed by the JVM when the following statement is executed

[3 marks]

Question 02

- 1) Write Java code to perform the following tasks.
 - (a) Define a data structure to implement a queue. The structure should contain:
 - i. Variables to store the **front** and **rear** positions of the queue.
 - ii. An array to hold numeric data of elements of type int in the queue.
 - (b) Declare a queue named myQueue using the structure defined in (a).
 - (c) Write a Java method to delete a data item from myQueue. Use int deleteQueue() as the method name. Include a check for queue underflow before deleting an item.
 - (d) Write a Java method to insert a data item into myQueue. Use void insert (int x) as the method name. Include a check for queue overflow before inserting an item.

[11 marks]

- 2) Describe the following terms with respect to graph data structure.
 - (a) Adjacent Vertices
 - (b) Path
 - (c) Cycle
 - (d) Degree of a vertex

[4 marks]

- 3) Answer the following questions on AVL trees
 - (a) the AVL condition.
 - (b) Insert the value 33 into the AVL Tree given below and show all steps.

[6 marks]

4) Trace the output of the following recursive method when the value 6 is passed as the parameter. Show all steps.

```
int factorial(int n) {
    if (n == 0) {
        return 1;
    } else{
        return n * factorial(n-1);
    }
}
```

[4 marks]

Question 03

- 1) Answer the following questions about external sorting.
 - (a) What is external sorting and why do we need external sorting algorithm?
 - (b) State the two types of external sorting algorithms.

[9 marks]

2) Using an initially empty hash table with 5 slots, and with the hash function $h(x) = x \mod 5$, resolve collisions using chaining. Insert the following sequence of keys into the table and draw the resulting hash table.

[7 marks]

3) Consider the following arithmetic expression and its binary tree representation.

$$a + ((b*(c-e))/f$$

- (a) Write the prefix form of the expression.
- (b) Write the postfix form of the expression.

[4 marks]

4) The diagram below represents a circular linked list. Write a java method to add the new node, pointed by P at the beginning of the list.

Question 04

- 1) A librarian has consulted you to develop a system for managing a collection of returned books. The books are arranged on a single counter, and the librarian always processes the most recently returned book first.
 - (a) What data structure would you recommend for this implementation?
 - (b) Justify your answer.

[3 marks]