

The Open University of Sri Lanka Department of Electrical and Computer Engineering Final Examination 2016/2017

ECX5233 - Communication Theory and Systems

CLOSED BOOK

Time: 0930 - 1230 hrs.

Date: 2017-12 -04

Answer any FIVE questions

1.

- (a) A periodic signal x(t) has a period of oscillation T_0 .
 - (i) Express the Fourier series of x(t) in complex exponential form and Trigonometric form. [02]
 - (ii) Simplify the expression given in (i) if x(t) is
 - (a) an even function (x(t) = x(-t)).
 - (β) an odd function (x(t) = -x(-t)).

[06]

(iii)

Fig. Q1

- (α) Express the signal x(t) shown in Fig.Q1 as complex exponential Fourier Series and trigonometric Fourier Series. [08]
- (β) Sketch the amplitude spectrum of x(t).

[02]

(γ) Suppose x(t) is transmitted through a low pass filter and the output signal will be x'(t). Draw the amplitude spectrum of x'(t). Comment on your answer. [02]

2.

- (a) (i) Define the Fourier transform $Y(\omega)$ of a non periodic signal y(t).
 - (ii) What information of the signal y(t) can be extracted from $Y(\omega)$?

[02] [02] (b) Find the Fourier Transforms of following functions and sketch them.

[10]

(i)

(ii)

Fig. Q2

(c) The Convolution of two waveforms x(t) and y(t) shown in Fig. Q2 can be defined as follows:

$$s(t) = x(t) * y(t) = \int_{-\infty}^{+\infty} x(\tau).y(t-\tau)d\tau - Convolution Integral.$$

Evaluate the convolution of x(t) and y(t) shown above.

[06]

3.

(a) Consider a system in Fig. Q3(a) with output y(t) = g(t).x(t) where $\dot{x}(t)$ is the square wave depicted in Fig. Q3(b).

Fig. Q3(b)

(i) Find $Y(\omega)$ in terms of $G(\omega)$ where $Y(\omega)$ and $G(\omega)$ are Fourier transforms of y(t) and g(t) respectively. [02]

- (ii) Sketch $Y(\omega)$ if $g(t) = \cos(t/2)$ [05] (iii) What is the impact of the channel on the spectral components of x(t)? [03] (b) If an amplitude modulated carrier $A(1 + m\cos\omega_m t)\cos\omega_c t$ is used as x(t), derive (i) an expression for $Y(\omega)$. [05] If $x(t) = A(1+s(t))\cos\omega_{s}t$ where s(t) is a non sinusoidal base band signal, (ii)derive an expression for $Y(\omega)$ in terms of $S(\omega)$, where $S(\omega)$ is the Fourier Transform of s(t). [05] 4. A repetitive waveform is given as $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$ where $T_s = \frac{2\pi}{8\omega_0}$ where (a) $\omega_0 = 2\pi/T$ Draw s(t) and express it using Fourier Series. (i) [03] (ii) Find the Fourier transform of s(t). [04] A signal $x(t) = Sin\omega_0(t)$ is sampled using the above impulse train s(t) and the sampled (b) signal $x_s(t) = x(t) \cdot s(t)$. Sketch $x_{x}(t)$. (i) [03] (ii) Find the Fourier transform $X_s(\omega)$ of $x_s(t)$. [04] (iii) Sketch $X_s(\omega)$ and explain whether x(t) can be recovered without distortion. [04] If the signal x(t) is sampled using a pulse train $r(t) = \sum_{n=-\infty}^{\infty} p(t-nT_0)$, where p(t) is a (c) rectangular pulse having a width τ and height 1. $p(t) = \begin{cases} 1, \text{ for } |t| \le \frac{\tau}{2} \\ 0 \text{ otherwise} \end{cases}$ give an expression for the sampled signal $x_s(t)$. [02] 5. (a) Define Auto Correlation function $\Re_{xx}(\tau)$, of a random process X(t). [01] Define Cross Correlation function $\Re_{xy}(\tau)$, of two random processes X(t) and Y(t).[01] (b) (c) What is understood by two *independent* random processes X(t) and Y(t)?
- [02]
- (d) X(t) and Y(t) are two random processes. A random process Z(t) is defined by

$$Z(t) = X(t) + Y(t).$$

Derive an expression for the autocorrelation function $\mathfrak{R}_{zz}(\tau)$ of Z(t) in terms $\Re_{xx}(\tau), \Re_{yy}(\tau), \Re_{xy}(\tau)$ and $\Re_{yx}(\tau)$.

where $\Re_{w}(\tau) = Auto \ Correlation \ function \ of \ random \ process \ Y(t)$. $\Re_{vx}(\tau) = Cross\ Correlation\ function\ of\ random\ processes\ Y(t)\ and\ X(t)$. [04]

- (e) Sketch the ensemble of the random process $x(t) = a\cos(\omega_c t + \theta)$ where ω_c is a constant and a and θ are independent random variables uniformly distributed in the ranges (-1, 1) and $(0, 2\pi)$ respectively.
 - (ii) Determine $\overline{X(t)}$ and $R_x(t_1, t_2)$. [04]
 - (iv) Hence determine whether the process is wide sense stationary. [02]
 - (v) Also determine whether the system is ergodic. [02]
 - (vi) If the system is wide sense stationary, what is its power P_s ? [02]
- (a) Consider a source m emitting messages m₁, m₂, ..., m_i. . m_n with probabilities P₁, P₂,P_i..., P_n respectively.
 - (i) Write an expression for the information content $I(m_i)$ of the message m_i . [01]
 - (ii) Write an expression for the average information content H(m). [01]
 - (b) Consider the binary symmetric channel (BCS) shown in Fig. Q5(a).

Fig. Q5

- (i) Find the channel matrix for the BSC channel in Fig. 5(a). [02]
- (ii) Fig. Q5(b) shows a cascade of two such channels.
 - (a) Find the probabilities of P(1|1) and P(1|0) in terms of P_e . [02]
 - (β) Show that the channel matrix of this cascaded channel is M^2 . [03]
- (iii) If the two BSC channels above have error probabilities P_1 and P_2 with channel matrices M_1 and M_2 respectively. Show that the channel matrix of the cascade of these two channels is $M_1 M_2$.

(c) A discrete memoryless source has an alphabet of seven symbols whose probabilities of occurance are as given here.

Syı	nbol	S_{θ}	S_I	S_2	S_3	S_4	S_5	S_{δ}
Pro	bability	0.25	0.25	0.125	0.125	0.125	0.0625	0.0625
						•		
Find,								
(i)	the Huffman code for the message.							[04]
(ii)	average codeword length							[02].
(iii)	the entropy of the specified discrete memoryless channel						4	[02]

7. (a)

Fig. Q7 shows the block diagram of a balanced modulator. The input applied to the top AM modulator is m(t), whereas and that applied to lower AM modulator is -m(t). Assume that these two modulators have the same amplitude sensitivity. Show that the output s(t) of the balanced modulator consists of a DSB-SC modulated signal. [05]

(b) An angle modulated signal with carrier frequency $\omega_c = 2\pi \times 10^6$ is described by the equation:

 $\varphi(t) = 10\cos(\omega_c t + 5\sin 300t + 10\sin 2000\pi t)$

(i)	Find the power of the modulated signal	[02]
(ii)	Find the frequency deviation Δf .	[02]
(iii)	Find the deviation ratio β .	[03]
(iv)	Find the phase deviation $\Delta \phi$.	[03]
(v)	Estimate the bandwidth $\varphi(t)$.	[03]
(vi)	What is narrow band <i>phase modulation</i> ?	[02]

8.

- (a) A communication system receives a random variable Y which is defined as Y = X + N where X is the input random variable and N is the channel noise N. X takes on the values -1/4 and 1/4 with P[X = 1/4] = 0.6. Let $f_N(n)$ denotes the probability density function of the channel noise and let X and N be independent. The receiver must decide for each received Y = y whether the transmitted X was -1/4 or 1/4. If N is uniform in (-1/2, 1/2),
 - (i) Determine and sketch the probability density functions of
 - (a) $f_Y(y|X=1/4)$
 - (β) $f_Y(y|X=-1/4)$
 - (γ) $f_{Y}(y)$

[09]

- (ii) Also determine the optimal rule such that the probability of correct decision is maximized. [03]
- (b) Briefly explain the following terms related to antennas mentioning how they are important in antenna design:
 - (i) Antenna gain
 - (ii) Radiation pattern
 - (iii) Antenna beamwidth
 - (iv) Antenna efficiency

[80]