

Final Examination 2024/2025

Date: 12-10-2024

From 4:30 pm. To 4:30 pm.

Answer All Questions in Part A and Answer Five Questions in Part B.

PART A

- 1. Find the domain and range of the function $y = \frac{(3x+1)}{\sqrt{(25-x^2)}}, x \neq \pm 5$.
- g(x) are defined by $f: x \to 2x + 7$; $x \in \mathbb{R}$, 2. The functions f(x) and $g: x \to x^3 - 1$; $x \in \mathbb{R}$. Find the following:
 - (a) $f \circ g$, (b) f^{-1} ,

 - (c) g^{-1} , (d) $f^{-1} \circ g^{-1}$, (e) $g^{-1} \circ f^{-1}$.
- 3. Solve the equation, $4^x 6 \times 2^x 16 = 0$.
- 4. Solve the equation, $16 \log_x 3 = \log_3 x$.
- 5. Given that the polynomial function $f(x) = x^3 + 2x^2 3x + k$, where k is a constant, when divided by (x - 1), has remainder 2, find the value of k.
- 6. Given that a, b and c are real numbers. Show that the roots of the equation $(x-a)(x-b) = c^2$ are real.
- 7. Solve the inequality $\frac{x-3}{x+1} \le 2$.
- 8. The line 3x + 2y = 12 meets the y-axis at A and x-axis at B. Find the area of the triangle OAB where O is the origin.
- 9. Show that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$.
- 10. Show that

$$\frac{1}{\csc\theta - \cot\theta} = \csc\theta + \cot\theta$$

PART B

- 11. (a) Let $f(x) = ax^3 + bx^2 11x + 7$, where $a, b \in \mathbb{R}$. If (x 1) is a factor of f(x), and the remainder when f(x) is divided by (x 2) is -7,
 - (i) find the values of a and b.
 - (ii) Find the other quadratic factor of f(x).
 - (b) Given that

$$x^3 + 11x + 8 = (x^2 + 9)(x - 1) + A(x^2 + 9) + B(x - 1)^2$$
, for all $x \in \mathbb{R}$.

Find the values of A and B.

Hence, write down $\frac{x^3+11x+8}{(x-1)^2(x^2+9)}$ in partial fractions.

- 12. Let $a, b, c \in \mathbb{R}$, $a \neq 0$ and $a b + c \neq 0$. Let $f(x) = ax^2 + bx + c$. Show that x = -1 is not a root of the equation f(x) = 0. Let α and β are the roots of f(x) = 0. Write down $(\alpha + \beta)$ and $\alpha\beta$ in terms of a, b, c.
 - (a) Show that the quadratic equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is $g(x) = cx^2 + bx + a = 0$.
 - (b) Show that if the roots of the equation f(x) = 0 are real, then the roots of g(x) = 0 are also real.
- 13. (a) Sketch the graph of y = 2|x-1| and y = |x| + 2 in the same diagram. Hence or otherwise, find all real values of x satisfying the inequality 2|x-1| > |x| + 2.
 - (b) Sketch the graph of y = 1 2|x| and of $y = \left|x \frac{1}{2}\right|$, in the same diagram. Hence, or otherwise find the values of x satisfying the equation $1 - 2|x| = \left|x - \frac{1}{2}\right|$.

2

14. (a) Write down the Sine rule for any triangle ABC.

With the usual notation show that $\tan \frac{(B-C)}{2} = \left(\frac{b-c}{b+c}\right) \cot \frac{A}{2}$.

(b) (i) Show that $\sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$ and $\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$.

- (ii) Let $f(x) = \sqrt{3} \sin x \cos x 1$. Express f(x) in the form $A \sin(x + \alpha) + B$, where A(>0), B and $\alpha \left(0 < \alpha < \frac{\pi}{2}\right)$ are constants to be determined. Deduce that $-3 \le f(x) \le 1$. Solve the equation f(x) = 0.
- 15. (a) Write down the maximum and minimum values of $y = 2 \sin x$, where $0 \le x \le 2\pi$.
 - (b) Sketch the graph of $y = 2 \sin x$.
 - (c) Also sketch the graph of $y = 2 \sin x + 1$ in the same diagram.
 - (d) Find all the roots which satisfy y = 2 and $y = 2 \sin x$ when $0 \le x \le 2\pi$.
 - (e) Find also all the roots which satisfy y = 1 and $y = 2 \sin x + 1$ when $0 \le x \le 2\pi$.
- 16. (a) Show that the perpendicular distance from the point (x_0, y_0) to the line ax + by + c = 0 is $\frac{[ax_0 + by_0 + c]}{\sqrt{a^2 + b^2}}$.
 - (b) Find the perpendicular distance from the point (1, 1) to the line 3x + 4y + 8 = 0.
 - (c) Find the equations of two straight lines which are one unit of perpendicular distance from the origin and parallel to the straight line 3x + 4y + 8 = 0.
- 17. (a) Show that the angular bisector of the acute angle between two straight lines x + y + 4 = 0 and 7x + y 8 = 0 is 2x + y + 2 = 0.
 - (b) Show that the point (2,-6) lies on the given two lines. Show also that the point (0,-2) satisfies the angular bisector of the acute angle.
 - (c) Find the equation of the line which is perpendicular to the bisector of the acute angle through (0, -2).