The Open University of Sri Lanka

B.Sc./B.Ed. Degree Programme

Applied Mathematics - Level 03

ADU3300/ADE3300 - Vector Algebra

Final Examination - 2024/2025

Duration: - Two Hours

Date: 27. 11. 2024

Time: 01.30 p.m. - 03.30 p.m.

General Instructions

- This paper consists of **TWO** sections, Section A and Section B. Section A is **compulsory**, it consists of **ONE** Essay Question.
- Section B consists of FIVE Essay Questions and answer only THREE of them.

SECTION A

Answer all questions.

1. a) Given that the vectors \underline{a} , \underline{b} , and \underline{c} form a basis, and the vectors:

$$u = a + 2c$$
, $v = 2b - c$, and $w = a - b$.

Verify that the vectors \underline{u} , \underline{v} , and \underline{w} are linearly independent.

- b) The position vectors of the points P and Q are $2\underline{i} + 4\underline{j} 3\underline{k}$ and $7\underline{i} 2\underline{j} + 5\underline{k}$ respectively. Find the angle between \overrightarrow{PQ} and vector $\underline{a} = 2\underline{i} + 2\underline{j} \underline{k}$.
- c) Find the plane through the point A (2, 3, 1) and normal to the vector $\underline{i} + 3\underline{j} 2\underline{k}$.
- d) Show that the vector function $\underline{G}(t) = t\underline{i} + (3t\cos t)\underline{j} + (4t\sin t)\underline{k}$ lies on the hyperboloid $x^2 \frac{y^2}{9} \frac{z^2}{16} = 0$.
- e) Find the Cartesian equation of an ellipse whose center is at the point with position vector $5\underline{i} 3\underline{j}$ and having major and minor axes of lengths 10 and 6 respectively, which are parallel to the x and y –axes.

SECTION B

Answer THREE questions ONLY.

- 2. a) Given the vectors $\underline{a} = (2, 3, -1)$, $\underline{b} = (4, -2, 5)$, and $\underline{c} = (-1, 4, 3)$:
 - i) Calculate the vector triple product $\underline{a} \times (\underline{b} \times \underline{c})$.
 - ii) Hence, verify the vector triple product identity $\underline{a} \times (\underline{b} \times \underline{c}) = (\underline{a} \cdot \underline{c})\underline{b} (\underline{a} \cdot \underline{b})\underline{c}$.
 - iii) Find the expression $(\underline{a} \times \underline{d}) \cdot (\underline{b} \times \underline{c})$, given $\underline{d} = (1,1,-2)$.
 - b) Let l_1 and l_2 be two straight lines given by $\underline{r} = \underline{i} + 5\underline{j} + 5\underline{k} + \lambda(2\underline{i} + \underline{j} \underline{k})$ and $\underline{r} = 2\underline{j} + 12\underline{k} + \mu(3\underline{i} \underline{j} + 5\underline{k})$ respectively.
 - i) Find the intersection point of the two lines.
 - ii) The point A lies on l_1 when $\lambda = 1$ and the point B lies on l_2 when $\mu = 1$. Obtain the vector equation of the line l_3 which passes through the points A and B.
- 3. a) Using the result $\underline{a} \times (\underline{b} \times \underline{c}) = (\underline{a} \cdot \underline{c})\underline{b} (\underline{a} \cdot \underline{b})\underline{c}$, where \underline{a} , \underline{b} and \underline{c} are given vectors, show that:
 - i) $\underline{i} \times (\underline{a} \times \underline{i}) + \underline{j} \times (\underline{a} \times \underline{j}) + \underline{k} \times (\underline{a} \times \underline{k}) = 2\underline{a}$,
 - ii) $(\underline{a} \times \underline{b}) \cdot (\underline{c} \times \underline{d}) = (\underline{b} \cdot \underline{d})(\underline{a} \cdot \underline{c}) (\underline{b} \cdot \underline{c})(\underline{a} \cdot \underline{d}),$
 - iii) Deduce that $(\underline{a} \times \underline{b}) \cdot [(\underline{b} \times \underline{c}) \times (\underline{c} \times \underline{a})] = [\underline{a} \ \underline{b} \ \underline{c}]^2$,
 - iv) Using part ii) show that $(\underline{a} \times \underline{b}) \cdot (\underline{c} \times \underline{d}) + (\underline{b} \times \underline{c}) \cdot (\underline{a} \times \underline{d}) + (\underline{c} \times \underline{a}) \cdot (\underline{b} \times \underline{d}) = 0$.
 - b) The position vectors of the points P, Q, and R are $\underline{p} = (3, 7, -1)$, $\underline{q} = (1, 2, -3)$, and $\underline{r} = (5, 4, 2)$ respectively. Find the area of the triangle PQR.

- 4. a) i) Show that the vectors $\underline{a}=(2,3,-1), \ \underline{b}=(0,4,5), \ \text{and} \ \underline{c}=(1,6,2)$ are non-coplanar.
 - ii) Find the volume of the parallelepiped formed by these vectors $\underline{a}, \underline{b}$, and \underline{c} .
 - b) Find the cartesian equation of the plane containing the line $\frac{x-2}{5} = \frac{y+3}{-6} = \frac{z-4}{2}$ and which is parallel to the line $\frac{x+1}{7} = \frac{y-2}{5} = \frac{z+3}{-8}$.
- 5. a) i) A particle moves along a curve, whose parametric equations are

$$x = 2\cos 2t$$
, $y = 2\sin 2t$, $z = \frac{3}{2}e^{-2t}$, where t is the time.

Find its velocity at time t, and the speed and acceleration at t = 0.

ii) Let $\underline{a}, \underline{b}$ be constant vectors and ω be a constant scalar. Given vector \underline{r} such that,

$$\underline{r}(t) = \cos \omega t \ \underline{a} + \sin \omega t \ \underline{b}$$
, show that $\underline{r} \times \frac{d\underline{r}}{dt} = \omega \ \underline{a} \times \underline{b}$.

- b) Find the work done on a particle constrained to move from (0,0) to (3,9) along the parabola $y = x^2$ by the field of force $\underline{F} = y\underline{i} + x\underline{j}$.
- 6. a) Given the parametric equations of a circle:

$$\underline{r}(\theta) = (a + a\cos\theta)\underline{i} + a\sin\theta j$$

- i) Prove that this parametric equation represents a circle of radius a centered at (a, 0).
- ii) Determine the point on the circle where $\theta = \frac{\pi}{3}$.
- iii) Verify if the point $(2a, \frac{a}{\sqrt{3}})$ lies on the circle.
- b) Given the space curve $\underline{r}(t) = \sin t \, \underline{i} + \cos t \, \underline{j} + t \, \underline{k}$, find :
 - i) the unit tangent vector,
 - ii) the principal normal and the curvature of the space curve.
