THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. /B.Ed. Degree Programme, Continuing Education Programme

APPLIED MATHEMATICS-LEVEL 03

ADU3201/ADU3218/ADE3201 - Basic Statistics

FINAL EXAMINATION 2024/2025

Duration: Two Hours.

Date: 23.11.2024

Time: 9.30 a.m. - 11.30 a.m.

Instructions

• This question paper consists of two parts: Part A and Part B. Part A is compulsory. Part B consists of five (05) essay type questions of which three (03) are to be answered.

PART A (Question 1 is compulsory)

(1) The school administration conducted a study to analyze factors affecting student performance in a high school. They collected data on the following variables for each student:

 W_1 : Study time per day coded as

a: Less than 1 hour b

b:1-3 hours

c: More than 3 hours

 W_2 : Mode of transportation to school coded as

a: Walking

b: Public transport

c: School bus

d: Personal vehicle

W₃: Number of absent days term

 W_4 : Final exam score (out of per 100)

 W_5 : Participation in extracurricular activities coded as

a: Active participation

b: Occasional participation

c: No participation

 W_6 : Temperature of the classroom during final exams (in Celsius)

- (i) Classify the variables as qualitative or quantitative.
- (ii) Classify the above variables quantitative variables as discrete or continuous.
- (iii) Classify the scale of measurements as nominal, ordinal, interval or ratio.

- (iv) State whether each of the following statements is true or false. In each case, give reasons for your answer.
 - a) A bar chart is appropriate to compare the average final exam scores (W_4) across different hours of study per day (W_I) .
 - b) A stacked bar chart is suitable for visualizing the distribution of final exam scores (W_4) based on the number of absent days (W_3) .
 - c) A histogram is suitable to display the frequency distribution of students' final exam scores (W_4) .
 - d) A pie chart is appropriate to illustrate the proportion of students using each type of transportation (W_2) .
 - e) A line graph is suitable for comparing the final exam scores (W_4) of students in different transportation categories (W_2) .

PART B (Answer 3 questions only)

(2) A hotel management is concerned about the reliability of its lift. They keep a weekly record of the number of times it breaks down over 20 weeks. The collected data is summarized in the following table.

Number of breakdowns	Frequency of breakdowns (f):
0-1	3
2-3	6
4-5	4
6-7	2
8-9	5

- (i) Estimate the mean number of breakdowns and interpret it in relation to this study.
- (ii) Estimate the median number of breakdowns.
- (iii)Calculate the Inter Quartile Range (IQR) and Inter Quartile Deviation (IQD) of breakdowns.
- (iv) Construct a suitable graph that can be used to find the distribution of frequency of breakdowns.
- (v) Clearly describe all the findings from the graph constructed in part (iv).

- (3) The probability that a child in a school has blue eyes is 0.27 and the probability he/she has blonde hair is 0.35. The probability that the child will have blonde hair or blue eyes, or both is 0.45. A child is chosen at random from the school.
- (i) Find the probability that the child has blonde hair and blue eyes.
- (ii) What is the probability that the child has blonder hair but not blue eyes.
- (iii) Find the probability that the child has neither feature.
- (iv) Let A be the event that the child has blue eyes. Let B be the event that the child has blonde hair.
 - a) Are A and B independent? Justify your answer.
 - b) Are A and B exhaustive events? Justify your answer.

(4)

- (i) Let A and B be any two events and A' and B' be the complementary events of A and B respectively. Show that $P(A' \cap B) = P(A')P(B)$.
- (ii) Show that If A, B and C are any three events then,

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) +$$

$$P(A \cap B \cap C).$$

- (iii) Let C and D are two events and $P(C|D) = \frac{1}{3}$, $P(C|D') = \frac{1}{5}$ and $P(D) = \frac{1}{4}$.
 - a) Find $P(C \cap D)$,
 - b) Find $P(C \cap D')$,
 - c) Find P(D'|C).

- (5) In a factory, machines A, B and C are all producing metal rods of the same length. Machine A produces 35% of the rods, machine B produces 25% and the rest are produced by machine C. Of their production of rods, machines A, B and C produce 3%, 6% and 5% defective rods respectively.
- (i) Draw a tree diagram to represent the above information.
- (ii) Find the probability that the randomly selected rod is produced by machine A and is defective.
- (iii) Find the probability that the randomly selected rod is defective.
- (iv) Given that a randomly selected rod is defective, find the probability that it was produced by the machine *C*.
- (6) Consider a random variable X that represents the outcome of drawing a number from a box with four slips of paper, each labeled with the numbers 1, 2, 3, and4. The probability of drawing each number is given by:

$$P_X(x) = \frac{(3x-1)}{26}$$
 ; $x = 1, 2, 3, 4$.

- (i) Create a Probability Distribution Table that shows each possible value of x and the corresponding probability p(x).
- (ii) Find the probability that the number drawn is at least two.
- (iii) Calculate the expected value E(X) of the number you are likely to draw.
- (iv) Show that the variance Var(X) = 0.92 of the number you drawn.
- (v) If a new rule changes the number on each slip to Y = 1 3X, find the variance Var(Y) for this new setup.
