The Open University of Sri Lanka Faculty of Natural Sciences B.Sc. /B. Ed Degree Programme

Department

: Mathematics

Level

: 04

Name of the Examination

: Final Examination

Course Title and - Code

: Vector Calculus - ADU4302/ADE4302

Academic Year

: 2024/2025

Date

: 24.11.2024

Time

: 9.30 a.m. To 11.30 a.m.

Duration

: Two Hours.

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of (6) questions in (2) pages.
- 3. Answer any (4) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Involvement in any activity that is considered as an exam offense will lead to punishment.
- 6. Use blue or black ink to answer the questions.
- 7. Clearly state your index number in your answer script.

- 1. (a) State and sketch the domain of the function $f(x,y) = \sqrt{25 x^2 y^2}$
 - (b) Sketch at least three level curves of the function $f(x,y) = \sqrt{25 x^2 y^2}$.
 - (c) Find the following limits if they exist justifying your answer.

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^4-y^2}{x^4+y^2}$$
, (ii) $\lim_{(x,y)\to(0,0)} \frac{4xy^2}{x^2+y^2}$.

(d) Discuss the continuity of the following function at (0, 0).

$$f(x) = \begin{cases} \frac{4xy^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

(You may use your conclusion regarding c(ii).)

- 2. (a) Define a stationary point of a single valued function f(x, y) defined over a domain D. Explain briefly how you could determine its nature.
 - (b) Find the maximum and minimum values of the function $f(x,y) = x^3 + 3xy^2 15x + y^3 15y$ and determine their nature.
 - (c) The electrical potential (voltage) in a certain region of space is given by the function $V(x, y, z) = x^3 xy^2 z$.
 - (i) Find the rate of change of the voltage at point (1, 1, 0) in the direction of the vector $\underline{v} = 2\underline{i} 3\underline{j} + 6\underline{k}$.
 - (ii) In which direction does the voltage change most rapidly at point (1, 1, 0)?
 - (iii) What is the maximum rate of change of the voltage at point (1, 1, 0)?
- 3. (a) Prove that grad ϕ is a vector normal to the contour surface $\phi(x, y, z) = c$, where c is a constant.
 - (b) (i) Show that the equation of the tangent plane and normal line to the surface F(x, y, z) = 0 at the point $P(x_0, y_0, z_0)$ is given by

$$(x - x_0) \left(\frac{\partial F}{\partial x} \right)_p + (y - y_0) \left(\frac{\partial F}{\partial y} \right)_p + (z - z_0) \left(\frac{\partial F}{\partial z} \right)_p = 0 \text{ and }$$

$$\frac{(x - x_0)}{\left(\frac{\partial F}{\partial x} \right)_p} = \frac{(y - y_0)}{\left(\frac{\partial F}{\partial y} \right)_p} = \frac{(z - z_0)}{\left(\frac{\partial F}{\partial z} \right)_p}.$$

- (ii) Using the above result, find the equation of the tangent plane and normal line to the surface $x^2 + 2xy y^2 + z^2 = 7$ at the point P(1, -1, 3).
- (c) Prove that the vector field $\underline{F} = (e^x \cos y + yz)\underline{i} + (xz e^x \sin y)\underline{j} + (xy + z)\underline{k}$ is conservative. Find the corresponding scalar potential function ϕ such that $\underline{F} = \nabla \phi$.
- 4. (a) State Gauss' Divergence Theorem.
 - (b) Verify the above theorem considering the vector field $\underline{F} = 4x\underline{i} 2y^2\underline{j} + z^2\underline{k}$ defined over the region bounded by the cylinder $x^2 + y^2 = 4$, z = 0 and z = 3 planes.
- 5. (a) State Stokes' Theorem.
 - (b) Verify the above theorem considering the vector field $\underline{F} = y\underline{i} x\underline{j}$ where S is the surface of the hemisphere S: $x^2 + y^2 + z^2 = 9$ and $z \ge 0$, C: is the perimeter curve $x^2 + y^2 = 9$.
- 6. (a) Suppose that S is a plane surface lying in the xy -plane and bounded by a closed curve C. If $\underline{F} = P(x, y)\underline{i} + Q(x, y)\underline{j}$ then show that $\oint_C (Pdx + Qdy) = \iint_S \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dxdy$.
 - (b) Verify the above result for the integral $\oint_C \{(6y+x)dx + (y+2x)dy\}$, where C is the path along the curve $(x-2)^2 + (y-3)^2 = 4$ and oriented in the counterclockwise direction.