00206

The Open University of Sri Lanka
B.Se/B.Ed. Degree Programme — Level 04
Final Examination — 2024/2025

Pure Mathematics

PEU4300 ~ Real Analysis 1

Duration: - Two Hours,

Date: - 25.11.2024 Time: - 01.30 p.m.-03.30 p.m.

Answer Four Questions only,

(01} (a) Using the definition of limit, Prove that
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(b) Let (x,) be the sequence given by Xy = ES— foreachn € N.

Prove that {x,,) is increasing and bounded.
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(c) Prove or disprove that I — %I < g foreveryn € N.

(02) Letx; > 0. Define the rest of the sequence {x,) by x,,, = ; (xn + 2

Xn
For eachn € N. Prove that,
() x, > 0foreachn e N,
(i) {xn) is bounded below,
(iii) {x,,) is monotonically decreasing,

{iv) {xn) converges and lim x, = 2.
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(03) (a) Using the definition of a sequence diverges to infinity, prove that the sequence

(311_@:;_1) diverges to oo.

v+
(b) write down the definition of a Cauchy sequence.
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Prove that <—:£) is Cauchy.
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(c) Prove that ((_1)“ (-—)) is not a Cauchy sequence.
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{04) (a) Let {x,) be a convergent sequence such that lim x, = x. Prove that
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T (%, — Xnsr) converges. Find Yo (i = Xnt1)
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(b) Show that Xn—¢ pevesymo bl Y

{c) Determine whether each of the following geometric series is convergent or divergent.
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{05) Determine the convergence or divergence of each of the following series:
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{06) (a) Determine the radius of convergence of each of the following power series:
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(b} Find whether each of the following series is conditionally convergent, absolutely
Convergent or divergent:
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