The Open University of Sri Lanka

B.Sc/B.Ed. Degree Programme - Level 04

Final Examination - 2024/2025

Pure Mathematics

PEU4300 - Real Analysis 1

Duration: - Two Hours.

Date: - 25.11.2024

Time: - 01.30 p.m.-03.30 p.m.

Answer Four Questions only.

(01) (a) Using the definition of limit, Prove that

$$\lim_{n\to\infty} \frac{n^3 + 3n^2 + 5n + 2}{2n^3 + n + 1} = \frac{1}{2}.$$

- (b) Let $\langle x_n \rangle$ be the sequence given by $x_n = \frac{n-8}{n+2}$ for each $n \in \mathbb{N}$. Prove that $\langle x_n \rangle$ is increasing and bounded.
- (c) Prove or disprove that $\left|\frac{3n+1}{2n+1} \frac{1}{2}\right| < \frac{4}{5}$ for every $n \in \mathbb{N}$.
- (02) Let $x_1>0$. Define the rest of the sequence $\langle x_n\rangle$ by $x_{n+1}=\frac{1}{2}\left(x_n+\frac{4}{x_n}\right)$

For each $n \in \mathbb{N}$. Prove that,

- (i) $x_n > 0$ for each $n \in \mathbb{N}$,
- (ii) $\langle x_n \rangle$ is bounded below,
- (iii) $\langle x_n \rangle$ is monotonically decreasing,
- (iv) $\langle x_n \rangle$ converges and $\lim_{n \to \infty} x_n = 2$.

(03) (a) Using the definition of a sequence diverges to infinity, prove that the sequence

$$\left(\frac{2n\sqrt{n}+1}{\sqrt{n}+2}\right)$$
 diverges to ∞ .

(b) write down the definition of a Cauchy sequence.

Prove that
$$\left(\frac{n^2-5}{n^2+2}\right)$$
 is Cauchy.

- (c) Prove that $\left((-1)^n\left(\frac{n+1}{n}\right)\right)$ is not a Cauchy sequence.
- (04) (a) Let $\langle x_n \rangle$ be a convergent sequence such that $\lim_{n \to \infty} x_n = x$. Prove that

$$\sum_{n=1}^{\infty} (x_n - x_{n+1}) \text{ converges. Find } \sum_{n=1}^{\infty} (x_n - x_{n+1}).$$

- (b) Show that $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+4)} = \frac{7}{24}$.
- (c) Determine whether each of the following geometric series is convergent or divergent.

(i)
$$\sum_{n=1}^{\infty} \frac{(-4)^{3n}}{5^{n-1}}$$

(ii)
$$\sum_{n=1}^{\infty} 9^{-n+2} 4^{n+1}$$
.

(05) Determine the convergence or divergence of each of the following series:

(i)
$$\sum_{n=1}^{\infty} \frac{|\cos n|}{n^{\frac{3}{2}}} ,$$

(ii)
$$\sum_{n=1}^{\infty} \frac{n!}{2^{2n-1}},$$

(iii)
$$\sum_{n=1}^{\infty} \frac{1}{3n^2-2n+7}$$
 , (iv) $\sum_{n=1}^{\infty} {n \choose \sqrt{n}-1}^n$,

(iv)
$$\sum_{n=1}^{\infty} \left(\sqrt[n]{n} - 1 \right)^n$$

(v)
$$\sum_{n=1}^{\infty} \frac{5^n}{2^n + 5}$$
.

(06) (a) Determine the radius of convergence of each of the following power series:

(i)
$$\sum_{n=1}^{\infty} \frac{(n!)^3}{3n!} x^n,$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n^3 3^n} x^n$$
.

(b) Find whether each of the following series is conditionally convergent, absolutely Convergent or divergent:

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+2)},$$

(ii)
$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\log n},$$

(iii)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n+1}{n+2}\right)$$
.