

Answer only ANY FOUR (04) questions.

Useful physical constants

Speed of sound in air $= 350 \text{ m s}^{-1}$

Speed of electromagnetic waves $= 3 \times 10^8 \text{ m s}^{-1}$

Note: Standard symbols have their usual meanings.

- (01) (a) A simple pendulum bob is pulled away from its equilibrium position and then released to execute a simple harmonic motion.
 - (i) Write down an expression for the displacement, x, of the bob from its equilibrium position as a function of time t. Define the other physical quantities used in your expression.
 - (ii) Derive expressions for velocity, v(t), and acceleration, a(t), of the bob at any given time t.
 - (iii) Using Hooke's law and Newton's second law, derive an expression for the period, T, of the said simple harmonic motion.
 - (b) At t = 0, the displacement of a bob executing a periodic motion is -8.50 cm, its velocity is -0.92 m s⁻¹ and the acceleration is 47.0 m s⁻². Determine the angular frequency, ω , and the frequency, f, of the periodic motion. (Consider $\pi = 22/7$)
- (02) (a) What are Lissajous figures?
 - (b) Construct Lissajous figures for the following cases:
 - (i) Two sine waves of equal frequency, in phase.
 - (ii) Two sine waves of equal frequency, 180 degrees out of phase.
 - (iii) Two sine waves of equal frequency, 90 degrees out of phase.
 - (iv) Two sine waves, in phase, the frequency of horizontal wave is twice the frequency of vertical wave.
- (03) (a) Briefly explain the *Doppler Effect* in sound with an example.
 - (b) Derive an expression for the frequency (f_o) observed by a stationary observer when a source of sound (of frequency f) is moving away from him with a constant speed (ν_s) .
 - (c) An ambulance is moving away from a stationary observer with a constant speed while blowing a siren of frequency 3000 Hz. The frequency observed by the observer is 2800 Hz. Determine the speed of the ambulance in km h⁻¹.

- (04) (a) Most surfaces reflect a portion of the sound falling on them. What could happen to the remaining (unreflected) portion of the sound?
 - (b) Name two acoustic phenomena caused by the reflection of sound.
 - (c) A man stationed between two parallel cliffs fires a single gunshot. He hears the first echo after 4 seconds and the next echo after 6 seconds. What is the distance between the two cliffs?
 - (d) State three (03) requisites for good acoustics of an auditorium.
- (05) (a) Briefly describe the process of (i) generation (ii) transmission and (iii) reception of radio waves.
 - (b) The intensity of electromagnetic waves, at a point A at a distance r away from the source, is proportional to $\frac{1}{r^2}$. Compared to the intensity at A, estimate the fraction of the intensity at a distance 4r away from the source.
 - (c) A FM radio station broadcasts on a frequency of 102.1 MHz with a power of 45.26 kW.
 - (i) What is the wavelength of the radio waves produced by this station?
 - (ii) Estimate the intensity of the radio-waves that reaches a receiver at a distance of 20 km from the source. (Assume that the source radiates uniformly in all directions).
- (06) (a) State the three common types of polarization and briefly explain each of them with the help of suitable sketches.
 - (b) As shown here, an unpolarized light is passing through a polarizer and then through an analyzer whose polarization axis is at an angle θ to the vertical.

Plot a ' θ ' vs ' I/I_{θ} ' graph to show the variation of transmitted intensity with the angle θ varying from 0° to 360° .

(Draw the graph on a usual answer sheet given to you. Separate graph sheet will not be provided. The graph need not be to the exact scale but use appropriate intervals and values for both x-axis and y-axis).
