The Open University of Sri Lanka

B.Sc/B.Ed. Degree Programme

Final Examination - 2024/2025

Pure Mathematics - Level 05

PEU5305 – Complex Analysis I

Duration: - Two hours

Date: - 10-12-2024

034

Time: - 09.30 a.m. - 11.30 a.m.

Answer FOUR Questions ONLY.

1.

- a) Determine where the function $f(z) = 2x^3 + xy^2 + i\left(\frac{1}{3}y^3 + 6x^2y\right)$ is differentiable and where it is analytic.
- b) Find a harmonic conjugate v(x, y) of the harmonic function $u(x, y) = x^2 y^2$ and express u(x, y) + i v(x, y) as a function of z.
- c) Let f(z) be analytic in a region G. Show that if |f(z)| is constant in G, then f(z) is constant in G.

2.

a) Prove that

i.
$$e^{i\theta} = \cos \theta + i \sin \theta$$
 for all $\theta \in \mathbb{R}$.

ii.
$$e^{z_1+z_2}=e^{z_1}.e^{z_2}$$
 for all $z_1,z_2\in\mathbb{C}$.

- iii. $\cosh^2 z \sinh^2 z = 1$ for all $z \in \mathbb{C}$.
- b) Solve the equation $e^{3z} = 1 + i$.
- c) Find the values of $\log(-1 i)$ and $\log(-1 i)$.

1

- 3.
- a) State Cauchy's Integral Formula.
- b) Using Cauchy's Integral Formula, evaluate the integral $\int_C \frac{\cosh z}{z+i} dz$, where C is the circle with radius 2 centered at 2i oriented counterclockwise.
- c) Apply Cauchy's integral formula to $\sin z$ with a suitable contour to show that $\int_0^{2\pi} \sinh(\sin \theta) \cos(\cos \theta) d\theta = 0.$
- 4.
- a) State Green's Theorem in the plane.
- b) Evaluate the line integral $\int_C (x^2 y^2) dx 2xy dy$, where C is the unit circle given by $x = \cos \theta$, $y = \sin \theta$; $0 \le \theta \le 2\pi$.
 - i. Using Green's Theorem in the plane.
 - ii. Using the parameterization of C.
- c) Let A be the area bounded by a simple closed contour C. Show that $A = -\int_C y \, dx$. Using the above formula, find the area enclosed by the cycloid $x = t \sin t$ and $y = \cos t 1$, for $0 \le t \le 2\pi$, and the x-axis.
- 5.
- a) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} {2n+3 \choose 3n+1} (z-1)^n$.
- b) Find the Maclaurin series of $f(z) = \sin^3 z$.
- c) Using Laurent's theorem show that $\sin\left(z+\frac{1}{z}\right)=\sum_{n=0}^{\infty}C_n\left(z^{2n+1}+\frac{1}{z^{2n}+1}\right)$ for $0<|z|<\infty$ where $C_n=\frac{1}{2\pi}\int_0^{2\pi}\sin(2\cos\theta)\cos(2n+1)\theta\ d\theta$ for n=0,1,2,...
- d) Find and classify the singularities of the function $f(z) = \frac{e^{2z}}{(z-1)(z+i)^2}$.

- 6.
- a) State Cauchy's Residue Theorem.
- b) Using Cauchy's Residue Theorem, calculate each of the following contour integrals:
 - i. $\int_C \cot z \, dz$, where C is the circle |z| = 4, oriented counterclockwise.
 - ii. $\int_C \frac{3z}{z^2+9} dz$, where C is the circle |z|=3, oriented counterclockwise.
- c) Using Cauchy's Residue Theorem, show that $\int_0^{2\pi} \frac{1}{3+2\cos\theta} d\theta = \frac{2\sqrt{5}\pi}{5}$.