THE OPEN UNIVERSITY OF SRI LANKA

B.Sc./ B.Ed. Degree Programme

APPLIED MATHEMATICS - LEVEL 03

ADU3302 - Differential Equations

NO BOOK TEST - 2024/2025

DURATION: ONE HOUR

Date: 16.03.2025

Time: 4.00 p.m. to 5.00 p.m.

ANSWER ALL QUESTIONS

1. Consider the differential equation

$$\frac{dy}{dx} + \frac{1}{2}y = \frac{1}{2}y^3.$$

(i) Use a suitable substitution to convert the above differential equation into the form

$$\frac{dz}{dx} + P(x)z = Q(x).$$

- (ii) Use the integral factor method to solve the differential equation found in (i) above and hence find y in terms of x.
- (iii) If $y(0) = \frac{1}{2}$, then find the solution of the originally given differential equation.
- 2. A cup of hot tea is left to cool in a room with a constant ambient temperature T_0 . According to Newton's Law of Cooling, the rate at which the temperature of the tea decreases is proportional to the difference between its temperature and the room temperature.
 - (i) Assuming that the cooling of tea in the cup follows this law, write down the differential equation in terms of T, T_0 , t, and a proportionality constant k.
 - (ii) Show that the temperature of the tea at time t is given by

$$T = T_0 + Ae^{-kt}$$

where A is a constant.

(iii) Given that the initial temperature of the tea is $80^{\circ}C$ and it cools to $60^{\circ}C$ after 10 minutes, while the room temperature remains at $20^{\circ}C$, determine the value of the proportionality constant k in Newton's Law of Cooling.
