

Final Examination 2023/2024

Level 03 Pure Mathematics

PEU3202/PEE3202 Vector Spaces

Duration: - Two Hours

Date: - 02-04-2024 Time: 9.30 a.m. to 11.30 a.m.

Answer four questions only

1.

- (a) Suppose V is a vector space over a field F. Prove that
 - (i) $0 \cdot x = 0$ for all $x \in V$ and $0 \in F$.
 - (ii) $\alpha \cdot 0 = 0$ for all $\alpha \in F$ and $0 \in V$.
 - (iii) $(-\alpha)x = -(\alpha x)$ for all $\alpha \in F$ and $x \in V$.
- (b) Let $M = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$. For every $\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$, $\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \in M$, define $\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix}$ and $\alpha \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} = \begin{bmatrix} \alpha a_1 & \alpha b_1 \\ 2\alpha c_1 & 3\alpha d_1 \end{bmatrix}$ for $\alpha \in \mathbb{R}$, where \mathbb{R} is the real number field. Is M a vector space over the field of real numbers under these operations? Justify your answer.
- (c) Determine whether the three vectors (1, 2, 2), (1, -1, 2) (1, 0, 1) are lineally independent over the usual vector space \mathbb{R}^3 over \mathbb{R} .

2.

(a) Let V be a vector space over the field F and $W \subseteq V$ and $W \neq \phi$. Show that W is a subspace of a vector space of V over F if and only if for all $\alpha, \beta \in F$ and $x, y \in W$, $\alpha x + \beta y \in W$.

- (b) Determine whether the following sets are subspaces of the vector space \mathbb{R}^4 over the field \mathbb{R} under the usual addition and scalar multiplication. In each case justify your answer.
 - (i) $A = \{(a, b, c, d) \mid a, b, c, d \in \mathbb{R}; b = 2a + a^2 \text{ and } c = d\}$
 - (ii) $B = \{(a, b, c, d) \mid a, b, c, d \in \mathbb{R}; a + b = c + d\}$
- (c) If α , β and γ are linearly independent vectors in V over a field F, prove that $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$ are also linearly independent.

3.

- Suppose V is a vector space over the field F. Show that if $\beta \in V$ is a linear combination of the set of vectors $\alpha_1, \alpha_2, \dots, \alpha_n \in V$, then the set $\{\beta, \alpha_1, \alpha_2, \dots, \alpha_n\}$ is linearly dependent.
- (b) Suppose W is a subspace of a finite dimensional vector space V over the field F, then prove that dim $W \le \dim V$
- (c) Let $T_1: U \to V$ and $T_2: V \to W$ are linear transformations of vector spaces over the same field F. Prove that the composition T_2 o $T_1: U \to W$ is also a linear transformation.

4.

- (a) Let $T:V \to W$ be a linear transformation where V and W are vector space over the field F. Show that
 - (i) T(0) = 0
 - (ii) $KerT = \{0\}$ if and only if T is one to one.
- (b) Let $V = \mathbb{R}^3$ and $W = \mathbb{R}^2$. Note that V and W are vector spaces over the field \mathbb{R} under the usual addition and scalar multiplication.

Consider the mapping $T: V \to W$ defined by T(x,y,z) = (x+y,x+2z).

- (i) Show that T is a linear transformation.
- (ii) Find the Kernel of T.
- (iii) Is T an Isomorphism? Justify your answer.

5.

(a) Let $M = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbb{R} \}$. Note that M is a vector space over the field \mathbb{R} under the usual matrix addition and scalar multiplication.

Let the mapping $T: M \to M$ be defined by $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a+b & b \\ 3c & d \end{bmatrix}$. Note that T is a linear Transformation

Determine whether the following sets are invariant subspaces of the vector space M over the field \mathbb{R} under T.

(i)
$$W = \left\{ \begin{bmatrix} a & b \\ a+b & 0 \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

(ii)
$$W = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\}$$

(b)

- (i) Define an inner product space.
- (ii) Let V be an inner product space over a field F. Prove that for $x_1, x_2, y_1, y_2 \in V$, $< x_1 + x_2, y_1 + y_2 > = < x_1, y_1 > + < x_1, y_2 > + < x_2, y_1 > + < x_2, y_2 >$
- (iii) Let $u = (x_1, x_2, x_3)$, $v = (y_1, y_2, y_3)$ where $u, v \in \mathbb{R}^3$. Define $< u, v > = x_1^2 y_1^2 + x_2^2 y_2^2 + x_3 y_3$. Is < u, v > an inner product on \mathbb{R}^3 ? Justify your answer.

6.

- (a) Let U be a subspace of a vector space V over a field F, $T:U\to V$ be a linear transformation and Ker $T=\{0\}$, Let $S=\{u_1,u_2,\ldots u_n\}$ be a linearly independent set of vectors in U. Is the set $T(S)=\{T(u_i)|u_i\in S\}$ linearly independent? Justify your answer.
- (b) Let $W = \{(1, 1, -2, 0), (2, 1, -3, 0), (-1, 0, 1, 0), (0, 1, -1, 0)\}$. Find a basis for the subspace $Sp < W > of \mathbb{R}^4$ over the field \mathbb{R}
- Show that the three vectors $u_1 = (1, 2, 2)$, $u_2 = (1, -1, 2)$ and $u_3 = (1, 0, 1)$ form a basis for E^3 , the usual Euclidean three space. Construct an orthonormal basis for E^3 out of $\{u_1, u_2, u_3\}$ using the Gram-Schmidt process.