The Open University of Sri Lanka

B.Sc/B.Ed. Degree Programme

Final Examination 2011/2012

Applied Mathematics

AMU 3185/AME 5185 - Electro Magnetic Theory & Special Relativity

Duration: - Two Hours.

Date: - 04.12.2012

Time: - 9.30 a.m. - 11.30 a.m.

Answer Four Questions Only.

- 01. (a) State Coulomb's Law.
 - Give an expression to find the force between two point charges and state clearly the units of the quantities in the expression.
 - (b) Two small positively charged spheres have a combined charge of 5.0×10^{-5} C. If each sphere is repelled from the other by an electrostatic force of 1.0N when the spheres are 2.0m apart, what is the charge on each sphere?
 - (c) A certain charge Q is divided into two parts q and Q-q, which are then separated by a certain distance. What must q be in terms of Q to maximize the electrostatic repulsion between the two charges?
- 02. (a) Let e_i , i = 1, 2, ..., n be a system of collinear point charges situated at points A_i , i = 1, 2, ..., n. Let P be any point and let θ_i be any angle between $A_i P$ and the positive direction of the line charges. Prove that, along any line of force PQ, $\sum_{i=1}^{n} e_i \cos \theta_i = \text{constant}.$
 - (b) Point charges e_1 and e_2 ($e_1 > e_2$) are situated at points P and Q respectively. Prove that extreme lines of force which pass through P to Q make, on leaving at P an angle α with $P\vec{Q}$, where $\cos \alpha = \frac{e_1 e_2}{e_1}$.
- 03. (a) State Gauss's Law.
 - (b) A sphere of radius R has a charge density $\rho = \frac{r}{R}\rho_0$ where ρ_0 is a constant and r is the distance from the center of the sphere.
 - (i) What is the total charge inside the sphere?
 - (ii) Find the electric field everywhere (both inside and outside the sphere).

04. State Biot-Savart's law.

A thin straight conductor AB of length I carrying a current I is situated along the y-axis such that the end A of conductor is at a distance y_1 from the origin O and B at a distance y_2 from O.

(i) Find an expression for the magnetic field \underline{H} at a point on the x-axis distant x_1 from the origin.

(ii) If the center of the conductor coincides with origin and if $x_1 >> l$, then find the magnitude of \underline{H} .

05. (a) State Kirchhoff's Laws.

(b) Find the current that passes through the resistor 2Ω in the network given below.

06. (a) With the usual notations obtain the Lorentz inverse transformation for

$$x' = \alpha x - \alpha vt$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{-\alpha v}{c^2} x + \alpha t$$

(b) In the inertial system S, an event is observed to take place at point A on the x-axis and 10^{-6} s later another event S takes place at point B, 900m further down. Find the magnitude and direction of the velocity of S with respect to S in which these two events appear simultaneous.