THE OPEN UNIVERSITY OF SRILANKA B.Sc / B.Ed DEGREE PROGRAMME – LEVEL 05 OPEN BOOK TEST (OBT) APPLIED MATHEMATICS ACADEMIC YEAR 2004/2005 AMU 3182/ AME 5182 – MATHEMATICAL METHODS I DURATION – ONE AND HALF HOURS

Date: 17 - 09 - 2005

Time: 10.30am to 12.00noon

Answer all questions.

1. (a) Solve the following differential equations.

(i)
$$y'' + 9y = 6\cos 3x$$

subject to $y = \frac{\pi}{4}$ when $x = 0$ and, $y = \frac{\pi}{3}$ when $x = \frac{\pi}{6}$.

(ii)
$$x^2u''(x) - xu'(x) - 3u(x) = 0$$
, $x > 0$

$$u(1) = 1$$
 and $x \to \infty$ is bounded.

(iii)
$$\frac{d^2y}{dx^2} + y + 2x^2 = 3$$
, given that $y = 7$ and $\frac{dy}{dx} = 0$ when $x = 0$.

(b) Show that general solution of the equation

$$\frac{d^2x}{dt^2} + n^2x = 0$$

can be written in the form

 $CSin(nt + \alpha)$, where C, α are arbitrary constants.

If
$$n = 6$$
 and $t = 0, x = \frac{9\sqrt{3}}{2}, \frac{dx}{dt} = 27$ find C, α .

2. (a) Transform the equation

$$(1+x^2)^3 \frac{d^2y}{dx^2} + 2x(1+x^2)^2 \frac{dy}{dx} + (1+x^2)y = 3x$$

by the substitution $x = \tan \theta$.

Hence or otherwise, determine the solution of this equation for which both y and $\frac{dy}{dx}$ vanishes when x = 0.

(b) (i) Write down, in a form suitable for generating solutions, the recurrence relations corresponding to an application of Euler's method in respect of

$$\frac{dx_1}{dt} = 3tx_2 + 4$$

$$\frac{dx_2}{dt} = tx_1 - x_2 - e^t \quad \text{where } x_1 = 5, x_2 = 2 \text{ at } t = 0.$$

- (ii) Use the recurrence relations you obtain in (i) with step length 0.1 to calculate $x_1(0.2)$ and $x_2(0.2)$.
- 3. Find the solution of each of the systems of equations given below in the usual notation.

(i)
$$\dot{x} - 2x + 2\dot{y} = 2 - 4e^{2t}$$

 $2\dot{x} - 3x + 3\dot{y} - y = 0$

(ii)
$$\ddot{y}_1 = 3y_1 + 2(y_2 - y_1)$$

 $\ddot{y}_2 = -2(y_2 - y_1)$