The Open University of Sri Lanka B.Sc. Degree Programme – Level 05 Closed Book Test (CBT) - 2009/2010 Pure Mathematics / Computer Science PMU 3294/PME 5294/CSU 3276 – Discrete Mathematics

Duration: - One & Half Hours

Date: - 29-10-2009.

Time: -4.00 p.m. -5.30 p.m.

Answer All Questions.

01. (a) Define a conditional probability.

- (b) Let (S, P) be a probability space and suppose that A_1, A_2, A_3 be three events in (S, P). Prove that $P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2 \cap A_3) P(A_3 \cap A_2)$.
- (c) (i) What is the conditional probability that a family of three children has more than one boy, given that they have at least one boy.
 - (ii) If the condition for part (i) is "the first child is a girl", then what is the conditional probability that they have more than one boy.
 - (iii) Determine whether the events "more than one boy out of three children" and "the first child is a girl" are independent.
- 02. (a) Define the degree of a vertex of a graph.
 - (b) Prove that $\sum_{i=1}^{n} \delta(v_i) = 2 \times (\text{Number of edges in the graph})$.

Hint:
$$\delta(v_i) = \sum_{j=1}^n a_{ij}$$
 where *n* is the number of vertices of the graph and a_{ij} is the (i, j) th entry of the adjacency matrix of the graph)

(c) Give the set theoretic definition of the following graph G:

- (i) By using the above graph G, verify the theorem in part (b),
- (ii) Write down the adjacency matrix of the graph G,
- (iii) Determine the number of paths of length three joining v_1 and v_4 . What are those paths?,
- (iv) Using the matrix obtained in part (ii), show that G is connected,
- (v) Is G a tree? Justify your answer.
- 03. (a) Define a second order homogeneous difference equation with constant coefficients.
 - (b) If g(n) and h(n) are solutions of a second order homogeneous linear difference equation with constant coefficients, then for any constants α and β , show that $\alpha g(n) + \beta h(n)$ is also a solution.
 - (c) Solve the following homogeneous difference equations:

(i)
$$2f(n+3)+3f(n+2)-f(n)=0$$
,

(ii)
$$f(n+2)-6f(n+1)+13f(n)=0$$
.

