The Open University of Sri Lanka B.Sc. Degree Programme – Level 05 Closed Book Test (CBT) - 2009/2010 Pure Mathematics / Computer Science PMU 3294/PME 5294/CSU 3276 – Discrete Mathematics

Model Answer

01. (a) Conditional probability:

Let A and B be two events in a probability space (S, P). Then the **conditional probability** of the event A given that the event B has occurred is defined to be P(A/B), where $P(A/B) = \frac{P(A \cap B)}{P(B)}$.

(b) Let (S, P) be a probability space and suppose that A_1, A_2, A_3 be three events in (S, P). Then

$$P(A_1 \cap A_2 \cap A_3) = P((A_1 \cap A_2) \cap A_3)$$

$$= P(A_1 \cap A_2) P(A_3 / A_1 \cap A_2)$$

$$= P(A_1) P(A_2 / A_1) P(A_3 / A_1 \cap A_2).$$

$$= P(A_1) P(A_2 / A_1) P(A_3 / A_1 \cap A_2).$$

- (c) Sample space $S = \{BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG\}$
 - (i) Let A: "They have more than one boy"

$$A = \{BBB, BBG, BGB, GBB\}$$
 \Rightarrow $P(A) = \frac{4}{8}$

Let B: "They have at least one boy"

$$B = \{BBB, BBG, BGB, BGG, GBB, GBG, GGB\} \Rightarrow P(B) = \frac{7}{8}$$

Also
$$P(A \cap B) = P(A) = \frac{4}{8}$$

$$\therefore P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{4}{8}}{\frac{7}{8}} = \frac{4}{7}$$

$$C = \{GBB, GBG, GGB, GGG\} \Rightarrow P(C) = \frac{4}{8}$$

$$A \cap C = \{GBB\}$$
 \Rightarrow $P\left(\frac{A}{C}\right) = \frac{P(A \cap C)}{P(C)} = \frac{\frac{1}{8}}{\frac{4}{8}} = \frac{1}{4}$

(iii) Since
$$P(A) = \frac{4}{8}$$
, $P(C) = \frac{4}{8}$ and $P(A \cap C) = \frac{1}{8}$

$$P(C)P(A) = \frac{4}{8} \times \frac{4}{8} = \frac{1}{4} \neq P(A \cap C)$$

 $\therefore A$ and C are not independent.

02. (a) Degree of a vertex:

Let G be a graph (or a multi-graph) and suppose that v is a vertex of G. Then the **degree** of v, denoted by $\delta(v)$, is the number of edges of G which are incident on v or, in other words, the number of edges of G having v as an end point.

(b) Let $A = [a_{ij}]_{n \times n}$ be the adjacency matrix of G. Then the sum of all the entries

in A is given by $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$.

We know that, if (v_i, v_j) is an edge of G. Then $a_{ij} = a_{ji} = 1 \implies a_{ij} + a_{ji} = 2$.

Thus each edge contributes 2 units to the sum.

Therefore
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} = 2|E(G)|$$
(1)

By the definition of the degree of vertex v_i , $\delta(v_i) = \sum_{j=1}^n a_{ij}$ (2)

By (1) and (2),
$$\sum_{i=1}^{n} \delta(v_i) = 2|E(G)|$$
.

(c)
$$V(G) = \{v_1, v_2, v_3, v_4\}$$
, $E(G) = \{v_1 v_2, v_1 v_3, v_2 v_3, v_2 v_4, v_3 v_4\}$

(i)
$$\delta(v_1) = 2$$
, $\delta(v_2) = 3$, $\delta(v_3) = 3$, $\delta(v_4) = 2$

$$\sum_{i=1}^{4} \delta(v_i) = 10 = 2 \times 5 = 2 \times \text{(number of edges of } G\text{)}$$

(ii)
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

(iii)
$$A^2 = \begin{bmatrix} 2 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix}$$
 and $A^3 = \begin{bmatrix} 2 & 5 & 5 & \boxed{2} \\ 5 & 4 & 5 & 5 \\ 5 & 5 & 4 & 5 \\ \boxed{2} & 5 & 5 & 2 \end{bmatrix}$

Number of paths of length 3 joining v_1 and v_4 is 2, which are $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4$ and $v_1 \rightarrow v_3 \rightarrow v_2 \rightarrow v_4$.

(iv)
$$A + A^2 + A^3 = \begin{bmatrix} 4 & 7 & 7 & 4 \\ 7 & 7 & 8 & 7 \\ 7 & 8 & 7 & 7 \\ 4 & 7 & 7 & 4 \end{bmatrix}$$
.

Notice that all the entries are non-zero, therefore G is connected

(v) No! Because G has cycles (for example: $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_1$)

- 03. (a) f(n+2) + a f(n+1) + b f(n) = 0; where a, b are constants, is a second order difference equation with constant coefficients.
 - (b) If g(n) is a solution of the equation in part (a), then $g(n+2) + a g(n+1) + b g(n) = 0 \qquad (1)$

If h(n) is a solution of the equation in part (a), then

$$h(n+2) + a h(n+1) + b h(n) = 0$$
(2)

Substitute $f(n) = \alpha g(n) + \beta h(n)$ to the equation in part (a). Then

$$(\alpha g(n+2) + \beta h(n+2)) + a(\alpha g(n+1) + \beta h(n+1)) + b(\alpha g(n) + \beta h(n))$$

$$=\alpha g(n+2) + a\alpha g(n+1) + b\alpha g(n) + \beta h(n+2) + a\beta h(n+1) + b\beta h(n)$$

$$= \alpha [g(n+2) + a g(n+1) + b g(n)] + \beta [h(n+2) + a h(n+1) + b h(n)]$$

$$= \alpha.0 + \beta.0 \qquad (by (1) and (2))$$

=0

Therefore $\alpha g(n) + \beta h(n)$ is also a solution.

Try: $f(n) = A^n$. Then the characteristic equation is $2A^3 + 3A^2 - 1 = 0$.

The solutions of the characteristic equation are $A = \frac{1}{2}, -1, -1$

Therefore the general solution of the above difference equation is:

$$\alpha \left(\frac{1}{2}\right)^n + \beta (-1)^n + \gamma n(-1)^n$$

(ii)
$$f(n+2)-6f(n+1)+13f(n)=0$$

Try: $f(n) = A^n$. Then the characteristic equation is $A^2 - 6A + 13 = 0$.

The solutions of the characteristic equation are $A = 3 \pm 2i$

Therefore the general solution of the above difference equation is:

$$\rho^n (\alpha \sin n\theta + \beta \cos n\theta)$$

where
$$\rho = \sqrt{3^2 + 2^2} = \sqrt{13}$$
 and $\theta = \tan^{-1}(\frac{2}{3})$