The Open University of Sri Lanka B.Sc. Degree Programme – Level 05 Open Book Test (OBT) - 2009/2010 Pure Mathematics / Computer Science PMU 3294/PME 5294/CSU 3276 – Discrete Mathematics

Duration: - One & Half Hours

Date: - 02-10-2009.

Time: -4.00 p.m. - 5.30 p.m.

Answer All Questions.

- 01. (a) Write the converse, inverse and contra-positive of the statement "If two triangles are similar then they are congruent".
 - (b) Let p and q be two statements. Then by means of truth table, show that $(p \Leftrightarrow q)$ is logically equivalent to $(\neg p \lor q) \land (p \lor \neg q)$.
 - (c) Prove or disprove each of the following statements:
 - (i) $\forall x \in \mathbb{R}, x^2 > 0.$
 - (ii) $(1^3 + 2^3 + 3^3 + ... + n^3) = (1 + 2 + 3 + ... + n)^2$.
 - (iii) $\forall x \in \mathbb{Q}, x^2 \in \mathbb{Q}.$
- 02. (a) Which of the following relations are partial order:

(i)
$$R = \left\{ (x, y) \middle| (x \in \mathbb{R}) \land (y \in \mathbb{R}) \land (y = x^2) \right\}.$$

(ii)
$$R = \{(x, y) | (x \in A) \land (y \in A) \land ("x \text{ divides } y") \},$$

where $A = \{1, 2, 3, 4, 6\}.$

(iii)
$$R = \{(x, y) | (x \in \mathbb{R}) \land (y \in \mathbb{R}) \land (y \le x) \}.$$

Justify your answer.

- (b) Let f be a homomorphism from a group G into a group G'. Suppose that x^{-1} is the inverse of x in G. Prove that $f(x^{-1})$ is the inverse of f(x) in G'.
- (c) Determine whether the operation "subtraction" in \mathbb{Z} , the set of integers, is associative:
- 03. (a) The internal telephone numbers in the phone system on a campus consist of **five** digits, with the first digit not equal to zero. How many different numbers can be assigned in this system?
 - (b) Let the number of r- permutations of n objects is denoted by ${}^{n}P_{r}$ and the number of r- objects subsets of n- objects set is denoted by ${}^{n}C_{r}$. Then prove that $r! {}^{n}C_{r} = {}^{n}P_{r}$.
 - (c) There are 20 Mathematics students and 15 Computer Science students in the Discrete Mathematics class. Find the number of ways of selecting **12 students** from the class, if
 - (i) there are no restrictions,
 - (ii) all must be mathematics major,
 - (iii) all must belong to the same discipline,
 - (iv) the two disciplines must have the same number of representatives.

