THE OPEN UNIVERSITY OF SRI LANKA BACHELOR OF SOFTWARE ENGINEERING TTZ4161 – PROBABILITY AND STATISTICS

FINAL EXAMINATION - 2010/2011

DURATION - THREE HOURS

DATE: 26th March 2011

TIME: 1400-1700

HOURS

Answer Question 01, which is <u>compulsory</u> and additional five (05) questions.

Question 1 carries twenty-five marks and Questions 2 to 8 carry fifteen (15) marks each.

You should clearly show the steps involved in solving problems.

No marks are awarded for the mere answers without writing the necessary steps.

01. Compulsory Question

- (A) Briefly describe the following terms used in statistics.
 - (i) Sample and Population
 - (ii) Statistical Inference
 - (iii) Random Variable
 - (iv) Probability Distribution.

(08 Marks)

- (B) Following are the marks obtained by students for a assignment test, 56, 64, 48, 92, 88, 80, 54, 76, 64, 84
 - (i) Calculate the mean and median of the marks.

(02 Marks)

(ii) Calculate the standard deviation of the above marks. (02 Marks)

(C)A selected group of employees of ABC company is to be surveyed with respect to a new pension scheme. Indepth interviews are to be conducted. The employees are classified as follows.

Category	Event	Number of employees		
Supervisors	Α			
Maintenance	В	50		
Production	С	1460		
Management	D	302		
Secretarial	E	68		

(i) What is the probability that the first person selected is a maintenance employee?. (02 marks)

(ii) What is the probability that the first person selected is either in maintenance or a secretarial? (02 marks)

(iii) What is the rule you used to determine the answer to question C (ii).

(02 marks)

(iv) Are these events mutually exclusive?

(02 marks)

- (D)(i)What are the parameters which characterize the "Normal Probability Distribution"?
 - (ii)Write the corresponding values for Standard Normal Probability Distribution"?
 - (iii)Determine the area under the Standard Normal curve for following situations.
 - Area to the left of Z=1.48
 - Area to the right of Z= 1.52
 - Area between Z= 1.54 and 1.83

(03 Marks)

(E) Briefly explain what do you understand by the terms "Null hypothesis" and "Alternate hypothesis".

(03 Marks)

Answer any Five questions from the below Seven questions

- (02) (a) Describe the importance of the measures of dispersion in a given setoff data. (03 Marks)
 - (b) A study of the quality of the ABC automobile batteries is to be conducted to estimate the number of times an engine will start before the battery fails. A sample of 40 randomly selected batteries revealed following number of starts.

26	27	26	20	21	42	30	22
22	21	26	09	21	22	28	26
19	16	20	32	18	23	32	28
21	41	19	31	21	22	16	23
30	21	37	28	39	30	21	23

(i) Arrange them in a frequency table.

(04 Marks)

(ii) Calculate mean, and median of the data.

(04 Marks)

- (iii) Calculate the variance, standard deviation and coefficient of variation. (04 Marks)
- (03) (a) Write the general rule of multiplication and the general rule of addition in probability. (02 Marks)
 - (b) Two factories A and B manufacture the same machine part. Each part is classified as having 0, 1, 2 or 3 manufacturing defects. The probabilities are as follows:

Number of defects

	0	1 .	2	3
Factory A	0.1250	0.0625	0.1875	0.1250
Factory B	0.0625	0.0625	0.1250	0.2500

- (i) A part is observed to have no defects. What is the probability that it was produced by factory A?

 (03 Marks)
- (ii) A part is known to have been produced by factory A. What is the probability that the part has no defects? (03 Marks)
- (iii) A part is known to have two or more defects. What is the probability that it was manufactured by factory A? (03 Marks)
- (iv) A part is known to have one or more defects. What is the probability that it was manufactured by factory B? (04 Marks)

- (04) (a) Write the mathematical formula of the binomial probability distribution.

 (02 Marks)
 - (b)A recent survey conducted by the research centre of the OUSL revealed that 70% of the registered students get eligibility for the course TTZ4161.

Sample of 10 students are selected for a study.

(i)What is the random variable of in this problem?

(03 Marks)

(ii) What is the probability that exactly 07 students were eligible?

(05 Marks)

(iii) What is the probability that more than 08 students were eligible?

(05 Marks)

- (05) (a) Write the mathematical formula of the 'Poisson probability distribution'.
 (03 Marks)
 - (b) The sales of ABC Computers in Kandy area follow a Poisson Distribution with mean of 3.0 per day.
 - (i) What is the random variable in this situation?
 - (ii) What is the probability that no computer is sold on a particular day
 - (iii)What is the probability that at least one computer is sold on a particular day?
 - (iv) What is the probability that for five consecutive days at least one computer is sold?

(12 Marks)

- (06) (a) What do you understand by the terms 'Point estimation' and 'Interval estimation'? (03 Marks)
 - (b) In a survey the number of misspelled words in an essay given to GCE O/L Examination was counted. In a sample of 40 answer scripts the mean number of misspelled words is 6.0 and the standard deviation is 2.44

Develop,

- (i) 99%, confidence interval
- (ii) 95%, confidence interval and
- (iii) 92% confidence interval for mean number of misspelled words in the whole population of students.

(You should describe how would you obtained the answer)

(12 Marks)

- (07) (a) What are the five steps involved in hypothesis testing? (03 Marks)
 - (b) In recent years, number of companies have been formed that offer competition to Ashok Telecom(AT) in Mobile Phones packages. All advertise that their rates are lower than that of AT and as a result their customer bills are lowered. The AT has responded by arguing that for the average consumer there will be no difference in billing. Available statistics reveals that the mean and the standard deviation of all customers using mobile phone packages are Rs 500 and Rs.20 respectively. Statistical Officer takes a random sample of 100 AT customers and calculate the mean and standard deviation of their bills. It was found that the mean is Rs 520 and standard deviation is Rs 20.
 - (i) State the "Null Hypothesis" and the "Alternate Hypothesis"

(02 Marks)

(ii) Compute the test statistics?

(03 Marks)

(iii). What is the decision rule?

(03 Marks)

- (iv) Can they conclude that there is no difference between average AT bills and that of it's competitors at 0.05 level of significance? (04 Marks)
- (08) (a) Write three properties of the normal probability distribution.

(03 Marks)

(b) The life time of a particular type of bulb is normally distributed with the mean of 3000 Hrs and standard deviation 200 Hrs.

Find the probability that one of these bulbs will last,

(i) between 3000 and 3500 Hrs

(04 Marks)

(ii) between 2600 and 3500 Hrs

(04 Marks)

After what number of burning hours would you expect that?

(iii) 5% of the bulbs would fail

(05 Marks)

Poisson Distribution: Probability of Exactly X Occurrences

					μ				
X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1 2 3	0.0045	0.0164	0.2222 0.0333 0.0033	0.2681 0.0536 0.0072	0.0758 0.0126	0.3293 0.0988 0.0198	0.1217	0.3595 0.1438 0.0383	0.1647 0.0494
5	0.0000	0.0000	0.0000	0.0001	0.0002	0.0004	0.0007	0.0077 0.0012 0.0002 0.0000	0.0020

					μ				
X	1.0	2.0	3.0	4.0.	5.0	6.0	7.0	8.0	9.0
0	0.3679 0.3679	0.1353 0.2707	0.0498 0.1494	0.0183 0.0733	0.0067 0.0337	0.0149	0.0009 0.0064	0.0003 0.0027	0.0001
2 3 4	0.1839 0.0613 0.0153	0.2707 0.1804 0.0902	0.2240 0.2240 0.1680	0.1465 0.1954 0.1954	0.0842 0.1404 0.1755	0.0446 0.0892 0.1339	0.0223 0.0521 0.0912	0.0107 0.0286 0.0573	0.0050 0.0150 0.0337
5 6 7 8 9	0.0031 0.0005 0.0001 0.0000 0.0000	0.0361 0.0120	0.1008 0.0504 0.0216 0.0081 0.0027	0.1563 0.1042 0.0595 0.0298 0.0132	0.1755 0.1462 0.1044 0.0653 0.0363	0.1606 0.1606 0.1377 0.1033 0.0688	0.1277 0.1490 0.1490 0.1304 0.1014	0.0916 0.1221 0.1396 0.1396 0.1241	0.0607 0.0911 0.1171 0.1318 0.1318
10 11 12 13	0.0000 0.0000 0.0000 0.0000 0.0000	0.0002 0.0000 0.0000 0.0000 0.0000	0.0008 0.0002 0.0001 0.0000 0.0000	0.0053 0.0019 0.0006 0.0002 0.0001	0.0181 0.0082 0.0034 0.0013 0.0005		0.0710 0.0452 0.0263 0.0142 0.0071	0.0993 0.0722 0.0481 0.0296 0.0169	0.1186 0.0970 0.0728 0.0504 0.0324
15 16 17 18 19	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.000.0 0.000.0 0.000.0 0.000.0	0.0002 0.0000 0.0000 0.0000 0.0000	0.0009 0.0003 0.0001 0.0000 0.0000	0.0033 0.0014 0.0006 0.0002 0.0001	0.0090 0.0045 0.0021 0.0009 0.0004	0.0194 0.0109 0.0058 0.0029 0.0014
20 21 22	0.0000 0.0000 0.0000	0.0002 0.0001 0.0000	0.0006 0.0003 0.0001						

Appendix – 2

Normal Distribution Table

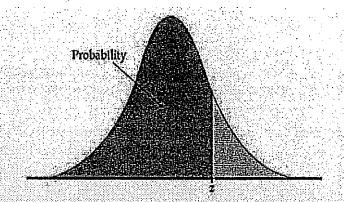


Table entry for z is the area under the standard normal curve to the left of z.

: \$:	,00	::01	:₁02	.03	;04:	:05	≇ .06 l	.07,	.08	₹0,
0.0	.5000	.5640	,.5080	-5120	5160	,5 <u>19</u> 9	.5239	.5279	,5310	5359
0.1	.5398	5438	.5478	.5517	. 5557	5596	.5636	,5675	.5714	.5753
0;2:-	J. 57 93	:5832	.5871	-5910	.5948	.5987	.6026	,6064	:6103	.6141
0.3	.6179	:6217	.6255	:.6293	ı6331	16368	.6406	6443	.6480	.6517
0.4	.6554	,6591	.6628	-6664	.6700	6736	.6772	.6808	.6844	.6879
0.5	票6915	6950	6985	7019	7054	.7088	7123	7157	7190	7224
0.6	7257	7201	7324	7357	7389	7422	7,454	7486	7517	7549
07	7580	- !761)	7642	7673	7704	77734	77/64	7794	7 7 7 8 2 3	¥7852
0.8	7881	7910	-,7939	7967	7995	8023	.8051	8078	8106	8133
0.9	8150	.8186	8212	.8238	1826 4	8289	.8315	8340	38365	8389
1.0	.8413	.8438	.8461	.8485	.8508	.853 i	.8554	8577	.8599	.8621
1:1	:8643	18665	.8686	.8708	18729	.8749	.8770	,8790	.8810	.8830
1,2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
13	.9032	.9049	.9066	.9082	.9099	9115	,913 1	9147	.9162	.9177
14	.9192	;9207	.9222	.9236	.9251	.9265	- 9279	୍ୱ .9292	,9306	.9319
15	.9332	.9345	9357	9370	.9382	0394	.9406	9418	.9429	9441
16	9452	9463	9474	. = 9484	:0495	.9505	9515	19525	9535	.9545
T_{i}	9554	9564	9573	.9582	.9591	9599		9616	9625	9633
J,8	.9641	19649	19656	19664	19671	.9678	.9686	9693	19699	9706
19	9713	.9719	.9726	.9732	9738	.9744	.9750	29756	.9761	97,67
2.0	.9772	.9778	.9783	.9788	.9793	.9798	_98Q3 ⁺	.9808	.9812	.9817
2,1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	-9850	.9854	.9857
2:2	.9861	.9864	.9868	±0871	.9875	.9878	.0881	.9884	.9887	.9890
23 24	.9893	.9896	.9898	19901	.9904	.9906	.9009	.9911	.9913	.9916
	.9918	19920	,9922	.9925	.9927	.9929	.0031	,9932	.9934	.9936
2/5	9938	9940	.9941	9943	9945	,9946	.9948	9949	,995 1	, 19952
2.6	9953	. 19955	19956	.9957	29959	9960	9961	9962	.9963	.996
2,7	.9965	29966	.9967	19968	.9969	.9970		-,9972	(9973	,9974
2,6	.9974	9975	9976	9977	-9977	.9978	.9979	.9979	.9980	. 9981
2.9	.0981		.9982	.0083	.0984	.9984	.9985	.,0085	, 9986	9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	1000.	10001	0001	.9992	.9992	.9002	.9992	.9993	999
3.2	.9993	.9993	.9994	.9994	.9994	,9994	.9994	.9995	.9995	.999
3/3	.9995	.9995	.9995	9996	.9996	.9996	.9996	.9996	.9996	.9997
3,4	9997	9997	9997	9997	.9997	.9997	9997	.9997	.9997	9998