THE OPEN UNIVERSITY OF SRI LANKA

FACULTY OF ENGINEERING TECHNOLOGY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING
BACHELOR OF SOFTWARE ENGINEERING

ECX5265 - SOFTWARE CONSTRUCTION

Date: 08 September 2015 Time: 0930 — 1230 hrs.

Important:
1. This question paper consists of four questions.

2. Answer all questions in Part A (60 marks) and TWO questions from Part B (40
marks).

3. State your assumptions, if any.

- e
e P A N

Part A — Answer all questions

i

S G e R
S R S R S

Refer the following article in page 3 & 4 to answer the question Q1. Clearly state your
assumptions.

Jayeeta Chanda, Sabnam Sengupta, Ananya Kanjilal, and Swapan Bhattacharya.

2010. Formalization of the design phase of software lifecycle: a grammar
based approach.

[Q1] A sequence diagram of the user transactions of a Bank ATM is shown in the F igure
Q1 as below. Show the assumptions clearly.

User ATM Bank

— card
—>

reqPin I l
enterPin - .
N veri
rocessing

| verify
- valid |
option

]
withdraw :

reaAmount I I

1
i
1
1
1
1

Figure Q1: A Sequence diagram of the user transactions of a Bank ATM

(a) Define the grammar G for the “4.2 Grammar for the Sequence Diagram” on
page 3. [07 Marks]

(b) Derive a regular string for the Figure Q1 which is accepted by the grammar G
above (a). Clearly show the modifications of the Figure Q1.

[25 Marks]

Page1of4

(c) Verify the modified sequence diagram above (b) with “5.1.2.Correctness Rule
for Sequence Diagram™ on page 4. [18 Marks]

(d) Write LEX implementation syntax for token of the grammar G above (a).
[10 Marks]

Part B — Answer only Two questions

[Q2] The FDL grammar rules define as follows (FDL, FDEF, FEXP, FLIST, are non-
terminals and others are terminals).

FDL — FDEF FDL | ¢

FDEF — #feature #: FEXP

FEXP — #op #(FLIST #)

FLIST — FEXP #, FEXP | #feature

(a) Draw a derivation tree for the following string.
#feature #: #op #(#op #(#feature #)#, #op #(#feature #)#)

[05 Marks]
(b) Draw a NFA for the string: {#feature #: #op #(#feature #)}* [05 Marks]
(c) Draw a DFA equivalent to NFA in (b) [10 Marks]

[Q3] Consider the grammar rules given below (DESK, EXPR, CONST, DEFS, DEF
are non-terminals and others are terminals).

DESK — print EXPR CONST
EXPR — EXPR +id | id
CONST — where DEFS
DEFS — DEFS DEF | ¢

DEF — id = int

(a) Derive the string: print id + id where id = int [02 Marks]
(b) Define the Chomsky Normal Form (CNF) for CFGs. [02 Marks]
(c) Convert the given grammar into CNF. [14 Marks]

(d) Derive the above string in (a) using new grammar in (c) [02 Marks]

[Q4]
(a) Briefly explains the four types of grammars with applications. [08 Marks]

(b) Draw a diagram and briefly explain the compilation phases by giving examples
for each phase. [12 Marks] -

Page2 of 4

attribute—»access_specifier data_type attribute name
| data_type attribute_name
access_specifier— +|_{#

data_type— void|integer|long|short |date |String [class
|double

attribute_name—» char

method_class— cname method D access_specifier data_type
method name (parameter_list)

parameter list—parameter*
parameter—data_type parameter name
parameter_name—> char
relation—cname multiplicity* cname relationship
relationship— identifier description type] identifier type
-type— aggregation | association | generalization
identifier —char
description — char
multiplicity—> digit .. digit
char— [a-z A-Z][a-z A-Z 0-9]+
digit—[0-9 *]
4.2 Grammar for the Sequence Diagram
P: S — sequence_diagram
sequence_diagram —» lifeline+
lifeline — object name focus_of control *

message — cname message*ID time_order message description
source destination

time_order — digit*

lifeline_ID — char

focus_ID —» char

message description — char| method_sequence
source--»actor_from | object from
destination — actor_to | object_to
actor_to — char

actor_from — char

object_to —» object name

object_from — object name
object_name —» char : classname
classname— char

method_sequence —» method ID char®()
char — [a-z A-Z 0-9]+

digit — [0 9]

4.3 Grammar for the State Chart Diagram
P: S — Statechart

Statechart — object event™ state” transition*
object— cname attribute_list

attribute_list — attribute*

atiributc — attr_name attr_value
attr_name— char

attr_value— char | digit

event — cname eventname (parameterlist)
state — statename cname

eventname— char

statename— char

paramcterlist-— char

transition — transition_ID message ID prestate event
[guard_condition] action poststate
| transition_ID
poststate

message 1D prestate event

action — cname char ()
prestate— statename

poststate-—statename

siatec
“Yran: tmon
o0 gyerl, , N\
i state «u .
\ ~ guard_con
cname ition
\ N
| object name slatename
attibute_list \ \
7/
\
atibute’s + ev\ent name
pxmeterﬁsl)
atlr_name y
/- atlr_y }'alue (char >
/ S char

Figure 1: Parse tree for the grammar of state chart diagram

The parse representations for the grammar of statechart are given
Figure 1.We can generate the parse tree for class and sequence
diagram in the same manner.. From the figures it is clear that all
the nonterminals are arriving at the terminal symbols (represented
by the leaves of the parse tree) using the set of production rules.
The “italicized” non-terminals have been introduced in the
production rule to incorporate traceability rules in different
elements of UML diagrams used in design phase of SDLC.
Even though these non-terminals may not be the intrinsic
part of the elements in UML 2.0 specification, they are
introduced to ensure requirement traceability and
consistency verification of rules using the Proposed Context
Free Grammar.

Page3 of 4

S. VERIFICATION OF PROPOSED RULES
5.1. Verification of Correctness Rule

5.1.1. Correctness Rule for Class Diagram
L. A class diagram must have at least one class.
2.A class diagram may or may not have a relationship
(association, generalization, aggregation etc.) between classes.
- Rule (1) &(2) can be verified from the following
production rules of the grammar

class_diagram— class™ relation®

class— name attribute™ method class*
From the above production rule we can derive the regular
expression
class_diagram —» class]

class_diagram —> class! class2 relation

3. A class must have one and only one name.
class— name attribute® method _class*

From the above production rule we have the regular
expression

class — name
4. A class may or may not have one or many attributes and
methods.

class— name attribute® method class*

class— name
class— name attribute

class— name attributel attributeN

class— name attributel attributeN method class

...... attributeN

method_classN

5. A relation may or may not have multiplicity but it should have
relationship.
relation— multiplicity* relationship multiplicity*

relation—relationship

relation — multiplicity relationship

relation— multiplicity relationship multiplicity

6. A relationship should have unique id and type and it may or

may not have description.

relationship— identifier description tvpe} identifier type

type—> aggregation | association | generalization

identifier —schar

description — char
relationship— identifier type — id1 aggregation
relationship— identifier description type
generalization
Therefore, all the correctness rules for the class diagram can be
verified using the proposed UML grammar.

— idl char

5.1.2.Correctness Rule for Sequence Diagram
1. A sequence diagram must have at least one message.

sequence_diagram — lifeline+
lifeline — object_name focus_of control +

lobject_name message+

focus_of _control — focus_ID message+
2. A message must have one and only one time order.

message—>
destination

time_order message_description source

3. A message is between one & only source and one &only
destination and must have a description. The message
description can be a string or a method.

message — time order
destination
message_descriptionscharimethod _sequence

4.A message must be composed of either one of the followmg

message description source

combinations:

o Twoobjects
source—object_to
destination — |object firom

o Oneobject and one actor
source—acior_to | object to
destination—actor_from| object from

o Two actors

source—actor_fo

destination —» actor_from
5. Sequence diagram have one and only one lifeline and lifeline is
uniquely identified by object name.

sequence_diagram — lifeline

lifeline — ()12[6(:[___]7((7"@ focus_of control +

6. Lifeline have one or many focus of control or
message.
lifeline — object_name focus_of control -+
lobject_name message+

atleast one

Therefore, all the correctness rules for the sequence diagram can
be verified using the proposed UML grammar

5.1.3. Correctness Rule for State Chart Diagram
I. A state chart diagram consists of one and only one object.

2. A state chart diagram should have at least one state.

3. A state chart diagram consists of zero or more instance of
events and transitions.

Rule (1) ,(2) and (3) can be verified by the following production
rule of the grammar of the State Chart Diagram.

Statechart — object event* state” transition*

Following regular expressions can be generated from the above
production rule

Statechart — objectl statel
Statechart — object2 statel state2 transitionl

Statechart —s

object3 statel state2 ..transition 1....

eventl
Hence rule (1) ,(2) & (3) is verified.

4. An object has a unique identifier (i.e. class name) and a list of
attribute.

Rule (4) can be verified by the following production rule

Paged of 4

