THE OPEN UNIVERSITY OF SRI LANKA BACHELOR OF TECHNOLOGY (level 06) **ECX 6241** FIELD THEORY FINAL EXAMINATION 2005

036

1at

TIME: 9.30 - 12.30 hours

Select ONE question each, from Sections A and B and answer all questions in Section C.

SECTION A:

Answer ONE question.

DATE: 10th May 2006

- 1. A conducting sphere of radius 'b' with a charge Q is placed in an initially uniform electric field $\mathbf{E} = \mathbf{a}_z E_0$. Determine
 - (a) the potential distribution $V(r, \theta)$
 - (b) the electric field intensity $E(r, \theta)$ after the introduction of the sphere

[Note: for spherical boundary value problems with no azimuthal variation $V_n(r, \theta) = [A_n r^n + B_n r^{(n+1)}] P_n(\cos \theta)$, where for n=0 $P_n(\cos \theta) = 1$; for n=1 $P_n(\cos\theta) = \cos\theta$

- 2. A rectangular conducting sheet of conductivity σ, has a width 'a' and a height 'b'. The electrostatic potential at the side edges of the conducting sheet is as shown in Figure 1. Find
 - (a) the potential distribution
 - (b) the current density every where within the sheet.

ıch

1

SECTION B:

Answer ONE question

- 3. A current of density $J = a_z J_0$, flows along an infinitely long solid cylindrical conductor of radius 'b' oriented along the z axis.
 - (a) calculate the magnetic flux density, inside and outside the conductor
 - (b) find the Poyinting vector on the surface of the conductor
 - (c) verify Poynting theorem
- 4. The far field of an antenna could be expressed as given below in spherical coordinates:

$$\begin{split} \mathbf{E}(\mathbf{r}, \, \theta) &= \mathbf{a}_{\theta} \, [\, (k_1/r) \, \sin \, \theta] \, e^{-j\beta r} \\ \mathbf{H}(\mathbf{r}, \, \theta) &= \mathbf{a}_{\phi} \, [(k_2/r) \, \sin \, \theta] \, e^{-j\beta r} \end{split}$$

Where k₁ and k₂ are constants and other symbols carry their usual meaning.

- (a) write an expression for the instantaneous Poyinting vector
- (b) find the total average power radiated by the antenna

SECTIONC:

Answer ALL questions.

For the 2nd assignment in Field Theory a student considered the varying magnetic field in a thin plate. A part of his answer for this assignment is reproduced below for your reference.

A thin plate of width 'b' and thickness '2a' is considered; where $b \gg 2a$ (refer Figure 2). The conductivity of the plate is σ .

Figure2

As shown in the figure 2 the Cartesian coordinate axes are placed in such a manner that the magnetic field H_0 exterior to the plate should have only a z-component. This field is same in strength on both sides of the plate. Assuming that the plate is normal to the x-axis; we can say that the H-field has only a z-component and depends only on the x-coordinate inside the homogeneous and isotropic plate. The basic field equations which applies for this situation is

$$\nabla^2 \mathbf{H} = j\omega\mu\mu_0\sigma\mathbf{H} \dots (1)$$

For the given plate from (1) we could get

$$d^2H_z/dx^2 = \gamma^2 H_z$$
 at $\gamma = \alpha + j \beta$ (2)

The solution of equation (2) could be written as $H = A_1 e^{-\gamma x} + A_2 e^{\gamma x}$ (3) where H is given by two waves traveling in opposite directions $\pm x$. By applying the boundary conditions $H_{x=a} = H_{x=-a} = H_0$

We get
$$A_1 = A_2 = H_0/2\cosh(\gamma a)$$
(4)

Therefore,
$$H = H_0 \left(\cosh(\gamma x) / \cosh(\gamma a) \right) \dots (5)$$

The magnetic field distribution over the plate thickness is shown in figure 3. Where the normalized field strength $h = H/H_0$ is plotted versus the normalized coordinate x/a.

Figure 3

$$h(x) = |H/H_0| = |\cosh(\gamma x)/\cosh(\gamma a)|$$

using (4); equation (3) could be written as,

$$H = (H_0/2\cosh(\gamma a)) e^{-\gamma x} + (H_0/2\cosh(\gamma a)) e^{\gamma x} = H_+ + H_-$$
(6)

Where, H- represents the wave traveling in the negative x direction (from the right plate surface towards left) and H_+ represents the wave traveling in the positive x direction (from the left surface of the plate towards right).

The electric field E (or the corresponding current density $J = \sigma E$) could be found by using the appropriate Maxwell's equation,

 $\mathbf{E} = \operatorname{curl} \mathbf{H}/\sigma \dots (7)$

From (7) it is possible to derive for our situation,

$$E = E_y = -(1/\sigma)\partial H/\partial x$$
(8)

We could find E+ traveling in the +y direction and E- traveling in the -y direction by using, $E_+ = \xi H_+$ and $E_- = \xi H_-$. Where ξ is the characteristic impedance of the medium.

By referring to the above answer following questions.

1. Starting from time-harmonic Maxwell;s equations derive equation (1), for the case of good conductors $\sigma>>> \epsilon\epsilon_0$

(10marks)

2. Derive equation (2) from (1).

- (5 marks)
- 3. Starting from (3) and using appropriate boundary conditions derive (5).

(5 marks)

4. (a) Referring to equation (6) and figure 3 find $|H_+/H_-|$ for the point x = 0.5a when, $\alpha a = 4$.

(5marks)

- (b) Is it possible to neglect one wave H₊ or H- (one compared to the other) under these conditions? Explain. (5marks)
- (a) Find the distance traveled by H₊ and H- separately in the situation considered in question 4.
 - (b) Is it possible to say that only one wave $(H_+ \text{ or } H_-)$ enters the region $x \ge 0.5a$? Explain. (5marks)
- 6. Show the derivation of equation (8).

(5marks)

7. Write expressions for corresponding Poyinting vectors **P**₊ and **P**₋. What can you say about the direction of each Poyinting vector? (10marks)

y

VECTOR RELATIONS

UNIT VECTOR

B₁, B₂, B₂ ·· sectangular B₂, B₃, B₄ ·· cylindrical B₂, B₂, B₃ ·· spherical

COORDINATE TRANSFORMATIONS

 $x = \rho \cos \phi = r \sin \theta \cos \phi$ $y = \rho \sin \phi = r \sin \theta \sin \phi$ $t = r \cos \theta$ $\rho = \sqrt{x^{2} + y^{2}} = r \sin \theta$ $\phi = \tan^{-1} y/1$ $r = \sqrt{x^{2} + y^{2} + z^{2}} = \sqrt{\rho^{2} + z^{2}}$ $\theta = \tan^{-1} (\sqrt{x^{2} + y^{2}/2}) = \tan^{-1} (\rho/z)$

COORDINATE COMPONENT TRANSFORMATIONS

 $A_s = A_p \cos \phi - A_\phi \sin \phi$ $= A_s \sin \theta \cos \phi + A_\phi \cos \theta \cos \phi - A_\phi \sin \phi$ $A_y = A_\theta \sin \phi + A_\phi \cos \phi$ $= A_s \sin \theta \sin \phi + A_\theta \cos \theta \sin \phi + A_\phi \cos \phi$ $A_c = A_c \cos \theta - A_\phi \sin \theta$ $A_\phi = A_c \cos \phi + A_s \sin \phi = A_s \sin \theta + A_\phi \cos \theta$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_\phi = A_x \sin \theta \cos \phi + A_z \sin \theta \sin \phi + A_z \cos \theta$ $= A_\phi \sin \theta \cos \phi + A_z \cos \theta \sin \phi - A_z \sin \theta$ $A_\phi = A_z \sin \theta \cos \phi + A_z \cos \theta \sin \phi - A_z \sin \theta$

DIFFERENTIAL ELEMENTS OF VECTOR LENGTH

 $dl = \begin{cases} n_1 dx + n_1 dy + n_2 dt \\ n_2 db + n_2 p d\phi + n_2 dt \\ n_1 dt + n_2 r d\theta + n_3 r \sin\theta d\phi \end{cases}$

DIFFERENTIAL ELEMENTS OF VOLUME

VECTOR OPERATIONS—RECTANGULAR COORDINATES

$$\nabla \partial u = u_1 \frac{\partial u}{\partial x} + u_2 \frac{\partial u}{\partial y} + u_3 \frac{\partial u}{\partial z}$$

$$\nabla \cdot A_1 = \frac{\partial A_2}{\partial x} + \frac{\partial A_3}{\partial y} + \frac{\partial A_3}{\partial z}$$

$$\nabla \cdot A_2 = u_1 \left(\frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z} \right) + u_2 \left(\frac{\partial A_2}{\partial z} - \frac{\partial A_3}{\partial z} \right) + u_3 \left(\frac{\partial A_3}{\partial x} - \frac{\partial A_3}{\partial y} \right)$$

$$\nabla^2 A = u_2 \nabla^2 A_3 + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^3} = \nabla \cdot \nabla u$$

$$\nabla^2 A = u_2 \nabla^2 A_3 + u_3 \nabla^2 A_3 + u_4 \nabla^2 A_4 = \nabla (\nabla \cdot A) - \nabla \times (\nabla \times A)$$

VECTOR OPERATIONS—CYLINDRICAL COORDINATES

$$\nabla^{2} \alpha = \eta_{1} \frac{\partial G}{\partial \rho} + a_{0} \frac{1}{\rho} \frac{\partial G}{\partial \phi} + a_{1} \frac{\partial G}{\partial z}$$

$$\nabla \cdot A = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\rho}}{\partial \phi} + \frac{\partial A_{1}}{\partial z}$$

$$\nabla^{2} \alpha = a_{1} \left(\frac{1}{\rho} \frac{\partial A_{2}}{\partial \phi} - \frac{\partial A_{2}}{\partial z} \right) + a_{0} \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_{1}}{\partial \rho} \right) + a_{1} \frac{1}{\rho} \left(\frac{\partial}{\partial \rho} (\rho A_{2}) - \frac{\partial A_{2}}{\partial \phi} \right)$$

$$\nabla^{2} \alpha = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\frac{\partial G}{\partial \rho} \right) + \frac{1}{\rho^{2}} \frac{\partial^{2} G}{\partial \phi^{2}} + \frac{\partial^{2} G}{\partial z^{2}}$$

$$\nabla^{2} A = a_{0} \left(\nabla^{2} A_{\rho} - \frac{2}{\rho^{2}} \frac{\partial A_{\rho}}{\partial \phi} - \frac{A_{\rho}}{\rho^{2}} \right) + a_{0} \left(\nabla^{2} A_{0} + \frac{2}{\rho^{2}} \frac{\partial A_{\rho}}{\partial \phi} - \frac{A_{\rho}}{\rho^{2}} \right) + a_{1} \nabla^{2} A_{1}$$

OWFERENTIAL ELEMENTS OF VECTOR AREA

 $ds = \begin{cases} a_{1} dy dz + a_{2} dx dz + a_{3} dx dz & dx & dy \\ a_{2} dy dz + a_{3} dy dz + a_{4} & dx & dy \end{cases}$

 $x_1 r^2 \sin \theta d\theta d\phi + \kappa_2 r \sin \theta dr d\phi + \kappa_2 r dr d\theta$

Vector Operations - Spherical coordinates

$$\nabla \alpha = \alpha_T \cdot \frac{\partial \alpha}{\partial T} + \alpha_0 \cdot \frac{1}{\gamma} \cdot \frac{\partial \alpha}{\partial \theta} + \alpha_0 \cdot \frac{1}{\gamma} \cdot \frac{\partial \alpha}{\partial \phi}$$

$$\nabla \cdot A = \frac{1}{T^2} \frac{\partial}{\partial Y} (T^2 A_T) + \frac{1}{Y \sin \theta} \frac{\partial}{\partial \theta} (A_{\theta} \cdot \sin \theta) + \frac{1}{Y \sin \theta} \frac{\partial A_{\theta}}{\partial \phi}$$

$$\nabla XA = \frac{1}{r^2 \sin \theta} \begin{vmatrix} A_r & r \cdot a_\theta & r \cdot \sin \theta \cdot a_\phi \\ A_T & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ A_T & T \cdot A_\theta & r \cdot \sin \theta \cdot A_\phi \end{vmatrix}$$

$$\nabla^{2}_{\alpha} = \frac{1}{7^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \alpha}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \cdot \frac{\partial \alpha}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \alpha}{\partial \phi^{2}}$$

$$\triangle \times \triangle \times \forall = \triangle(\triangle \cdot \forall) - \triangle_{r} \forall$$

$$\frac{d}{dx}(\sin ax) = a \cos x$$

$$\frac{d}{dx}$$
 (cos ax) = - a sin x

$$\int \sin ax \cdot dx = -(\cos ax)/a$$

 $\int \nabla \cdot \overline{A} \, dV = \oint \overline{A} \cdot dS \qquad \int (\nabla \times \overline{A}) \cdot dS = \oint \overline{A} \cdot dL$ D= e= , B=/H, J= == $\nabla x (\nabla V) \equiv 0$, $\nabla (\nabla x \bar{A}) \equiv 0$; $\bar{F} = -\nabla V + \nabla x \bar{A}$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\int_{c}^{c} \vec{E} \cdot d\vec{l} = -\frac{\partial \vec{P}}{\partial t}$ $\vec{E}_{1t} = \vec{E}_{2t}$ $\nabla \times \overline{H} = \overline{J} + \partial \overline{D}/\partial t$ & \overline{H} . & $\overline{H} = \overline{J} + \partial \overline{D}/\partial t$ & $\overline{H} = \overline{H} = \overline{H}$ $\nabla \cdot \overline{\mathfrak{D}} = \rho$ $\oint_{S} \overline{D} \cdot dS = Q \qquad \overline{a}_{n2} \times (\overline{H}_{1} - \overline{H}_{1}) = \overline{J}_{3}$ $\oint_{S} \overline{B} \cdot dS = Q \qquad \overline{a}_{n2} \cdot (\overline{D}_{1} - \overline{D}_{1}) = \rho_{S}$ $\nabla \cdot \overline{\mathcal{B}} = 0$ $\nabla \cdot \vec{J} + \frac{3P}{2t} = 0$ $S = \nabla \times \vec{A}$ $\nabla \cdot \vec{A} + \gamma \varepsilon \frac{3V}{2t} = 0$ $\nabla^2 \vec{A} - \gamma \varepsilon \frac{3^2 \vec{A}}{3t^2} = -\mu \vec{J}$ $\vec{E} = -\nu v - \frac{3\vec{A}}{3t}$ $\nabla^2 v - \gamma \varepsilon \frac{3^2 \vec{V}}{2t^2} = -\rho/\varepsilon$ $V(R,t) = \frac{1}{4\pi\epsilon} \int_{V} \frac{\rho(t-R/u)}{R} dv' \quad V(R) = \frac{1}{4\pi\epsilon} \int_{V} \frac{\rho e^{jkR}}{R} dv'$ $\overline{A}(R,t) = \frac{1}{4\pi\epsilon} \int_{V} \frac{1}{\sqrt{R}} \frac{(t-R/u)}{R} dv' \quad \overline{A}(R) = \frac{1}{4\pi\epsilon} \int_{V} \frac{\rho e^{-jkR}}{R} dv'$ $\nabla X = -j \omega \mu H$ $\nabla^2 V + k^2 V = -f/\epsilon$ $\nabla X = -j \omega \mu H$ $\nabla^2 V + k^2 V = -f/\epsilon$ $\nabla X = -j \omega \mu H$ $\nabla^2 V + k^2 V = -f/\epsilon$ $\nabla^2 A + k^2 A = -\mu J$ $\nabla X = -\mu J$ ∇X $\delta = \alpha + j\beta$, $\delta = k\alpha$ $\alpha \neq \pi + \mu \sigma$ $\frac{\sin \theta_{+}}{\sin \theta_{i}} = n_{1}/n_{2}; n = c/\mu p \quad Z_{0} = \left(\frac{R + j \mu L}{G + j \mu C}\right)^{\frac{1}{2}} \qquad V = +\lambda = -\frac{1}{2}$ $\frac{\sin \theta_{+}}{\sin \theta_{i}} = n_{1}/n_{2}; n = c/\mu p \quad Z_{0} = \left(\frac{R + j \mu L}{G + j \mu C}\right)^{\frac{1}{2}} \qquad V = +\lambda = -\frac{1}{2}$ $Y = f \lambda = \omega / \beta$ 7=[R+jwL)(G+jwc)]/2 72+ Par = = Re (EXH*) tar. = 1 Ke (EXHT)
total radiated power = Pav. X4A71 H=1E S= 1+111
1-111. SINDE = VEYL PO 2 4RXIO 7 H/M B $R_T = 80\pi^2 \left(\frac{49}{\lambda}\right)^2$ $\frac{1}{1} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}, \quad \frac{1}{\eta_2 \cos \theta_t - \eta_1 \cos \theta_t} \approx 28.854 \times 10^{12} \text{ F/m}$ M2 cos Bt + M cos Bi $\frac{2\eta_2\cos\theta_i}{\eta_2\cos\theta_i+\eta_1\cos\theta_i}; \quad \frac{2\eta_2\cos\theta_i}{\eta_2\cos\theta_i+\eta_1\cos\theta_i}$ SINOB+ = 1 (1+ M/M2) 1/2; SIN BB | = 1 (1+ E1/e2) 1/2