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THE OPEN UNIVERSITY OF SRILANKA
BACHELOR OF TECHNOLOGY (level 06)
ECX 6241

FIELD THEORY

FINAL EXAMINATION 2005

DATE : 10" May 2006

TIME : 9.30—-12.30 hours

Select ONE question each, from Sections A and B and answer all questions
in Section C.

SECTION A:

Answer ONE question.

1.

A conducting sphere of radius ‘b’ with a charge Q is placed in an initially uniform
electric field E = a, Eg. Determine

{(a) the potential distribution V(r, 6)
(b) the electric field intensity E(r, 8) after the introduction of the sphere

[Note: for spherical boundary value problems with no azimuthal variation
Va(r, ) =[Aqr +B, r"{nﬂ)] P.(cos0), where for n=0 P,(cos 6) = 1; for n=1
P,(cosB) = cosh ]

A rectangular conducting sheet of conductivity ¢ , has a width “a’ and a height ‘b’.
The electrostatic potential at the side edges of the conducting sheet is as shown in
Figure 1. Find
(a) the potential distribution
{(b) the current density every where within the sheet.
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SECTION B:

Answer ONE question

3. A current of density J = a, J;, flows along an infinitely long solid cylindrica]
conductor of radius ‘b’ oriented along the z axis.

(a) calculate the magnetic flux density, inside and outside the conductor
(b) find the Poyinting vector on the surface of the conductor
(c) verify Poynting theorem

4, Tt_legfar field of an antenna could be expressed as given below in spherical
coordinates:

E(r, 8) = ag [ (ky/r) sin 8] ¢ 7"
H(r, 0) = a, [(ko/r) sin 0] & I

Where k; and kj are constants and other symbols carry their usual meaning,.

i (a) write an expression for the instantaneous Poyinting vector
(b) find the total average power radiated by the antenna

"

SECTIONC:
| Answer ALL questions.
For the 2™ assignment in Field Theory a student
i = considered the varying magnetic field in a thin plate. A

y part of his answer for this assignment is reproduced.
below for your reference. "

P A thin plate of width ‘b’ and thickness ‘2a’ is
1_ e considered; where b >> 2a (refer Figure 2). The '
Mo .7 conductivity of the plate is ©. y
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As shown in the figure 2 the Cartesian coordinate axes are placed in such a manner that

the magnetic field Hy exterior to the plate should have only a z-component. This field is
same in strength on both sides of the plate. Assuming that the plate is normal to the x-
axis; we can say that the H-field has only a z-component and depends only on the x-
coordinate inside the homogeneous and isotropic plate. The basic field equations which

applies for this situation is

For the given plate from (1) we could get
CH/b =" H, at y=a+iB ..o, (2)

The solution of equation (2) could be written as H = Are g Aje L (3)
where H is given by two waves traveling in opposite directions +x. By applying the

boundary conditions H y=p = H x=a= Hp
We get Ay = Ay = Hp/2cosh(ya) «.oovvevnennennnn. 4)

Therefore, H = Hy (cosh(yx)/cosh(ya)) ......ovevennnnnnen. (5)

The magnetic field distribution over the plate thickness is shown in figure 3. ‘Where the
normalized field strength h = H/Hy is plotted versus the normalized coordinate x/a.

h e
Aalac-5 .~ 1
I 7t
T 4 £
’ .
r jl .
o5 ;o Figure 3
L 7
i Fa
s
L - Y
&,
L~
)—'.--—"'-‘/ ,'{a'
@ o-5 "o

h(x)= | HHy| = | cosh(yx)/cosh(ya)|

using (4) ; equation (3) could be written as,

H = (Hp/2cosh(ya)) ¢ ™+ (Ho2cosh(ya))e " =Hi+H- .ooverennennn. (6)




Where, H- represents the wave traveling in the negative x direction {(from the right plate -
surface towards left) and H, represents the wave traveling in the positive x direction
(from the lefi surface of the plate towards right). S

The electric field E (or the corresponding current density J = oE ) could be found by
using the appropriate Maxwell’s equation,

From (7) it is possible to derive for our situation,
E=E,=-(1/6)0H/OX ..ccovvvneennn.... (8)

We could find E+ traveling in the +y direction and E- traveling in the —y direction by
using.-E; = EH. and E- = EH-. Where E is the characteristic impedance of the medium.

By refgl:ring to the above answer following questions.

1. Starting from time-harmonic Maxwell:s equations derive equation (1), for the -
case of good conductors 6>>> ggg §

(10marks)
2. Derive equation (2) from (1). (5 marks)
3. Starting from (3) and using appropriate boundary conditions derive (5).
(5 marks)
4. (a) Referring to equation (6) and figure 3 find| H, / H for the point x =(0.5a
when, aa =4,
(5marks)
(b) Is it possible to neglect one wave H; or H- (one compared to the other) under
these conditions? Explain. (5marks)
5. (2) Find the distance traveled by H, and H- separately in the situation considered
In question 4. (10marks)
(b) Is it possible to say that only one wave (H; or H-) enters the region x = 0.5a?
Explain. {5marks)
6. Show the derivation of equation (8). (5marks)

7. Write expressions for corresponding Poyinting vectors P, and P-. What can you '_
say about the direction of each Poyinting vector? (10marks)
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Vectoy ‘Opevationg — Spherical coovdinates
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