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Answer the question given in SECTION A and select any four questions
from SECTION B.

SECTION A:

1. By using the concepts of drift diffusion model/energy band model or as needed of
both models, derive the mathematical model of ONE of the following devices:

(a) diode

(b) BIT
(c) MOSFET

SECTION B:
Select ANY FOUR questions

The pages 3 to 7 of the article ‘An optimal contro! approach to semiconductor design’ by
Michael Hinze and Rene Pinnau is attached for your reference. Read these pages and
answer following questions.

2. Describe in your own words the problem considered in this article.

3. State the physical meaning of each equation (1.1a), (1.1b), (1.1¢), (1.1d) and (1.1e).
Name the five unknown variables in the above set of equations.

4 To find solutions to the system of differential equations (1.1) it is necessary to
specify boundary conditions. What sort of boundaries is considered for this particular
device.




5. Derive the system of equations (1.2) i.e. equations (1.2a), (1.2b) and (1.2¢) from the
systern of equations (1.1). State the boundary conditions for the system of equations
(1.2) and all assumptions made during derivation (if any) clearly.

6.  Briefly explain (in point form ) the basic concepts of the drift diffusion model.

7. Briefly explain (in point form) the underlying scientific theory of the drift diffusion
model.

L

8. In the context of the given article why is it desirable to simulate the behavior of
semiconductor devices? What are microscopic and macroscopic device models?
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The design problem for semiconductor devices is studied via an optimal control ap-
proach for the standard drift diffusion model. The solvability of the minimization
problem is proved. The first—order optimality system is derived and the existence of
Lagrange-multipliers is established. Further, estimates on the sensifivities are given.
Numerical results concerning a symmetric n—p—diode are presented.
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Due to the rapidly increasing demand for semiconductor technology lots of effort has been
spend on the development of new semiconductor devices. Especially, the ongoing minia-
turization revealed several challenging problems for electrical engineers and applied math-
ematicians, too. Numerical simulations proved to be the main tool for reducing the time
of a design cycle. For this purpose a hierarchy of models is employed, which ranges from
microscopic, like the Boltzmann—Poisson or the Wigner—Poisson model, to macroscopic
models, like the energy transport, the hydrodynamic and the drift diffusion model (DD)
[MRS90). Most popular and widely used in commercial simulation packages is the DD, -
which allows for a very efficient numerical study of the charge transport in many cases of
practical relevance.

Many performance properties of semiconductor devices can be derived from the so—called
current—voltage characteristics (IVC), which relates the applied biasing voltage and the
current density. Typically, such an ideal IVD is given and the enginesr mests the following
design problem: - Adjust physical! and/or geometrical parameters of a semiconductor device
such that the given ideal IVC is matched optimally with respect to certain performance
criteria.

In most applications one changes the geometry and the doping profile, which describes the
the density of charged background ions. In the conventional design cycle simulation tools
are employed to compute the IVC for a certain set of parameters and then, the parameters
are adjusted empirically. Thus, the total design time depends crucially on the knowledge
and experience of the electrical engineer.

Although this problem can be clearly tackled by an optimization approach, only recently
efforts were made to solve the design probiem via optimization techniques. In [LWT99)] Lee
el al. present a finite-dimensional least-squares approach for adjusting the parameters of
a semiconductor to fit a given, ideal IVC. Their work is purely numerical and has its focus
on testing different approaches to solve the least-squares problem. Recently, [BEMP00]
addressed the identification problem for the doping profile from current-voltage data via
the linearized drift diffusion model.

In standard applications a working point, i.e. a certain voltage—current pair, for the device
is fixed [Sze81]. Especially for MOSFET devices in portable systems it is most important
to have on the one hand a low leakage current, which maximizes the battery lifetime, and
on the other hand to maximize the drive current [SSP+98]. Thus, in this paper we consider
exemplarily the modified design question:

Is it possible to gain an amplified current at the working point only by a slight
change of the doping profile?

In the following we give a positive answer to this question by means of an optimal control
problem for the DD. In [SSP*99] this problem was approached numerically by a blackbox
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optimization, which only required evaiuations of a device simuiator for differeni sers of
doping parameters. The resuits are encouraging, although the biackbox optimizer yieids
high computational costs.

We focus on the DD due to fact that this model is today most widely used in simulation

codes, since it allows for an accurate description of the underlying physics in combination

with low computational costs. There exists a large amount of literature on this model,
which covers “‘.1"‘-‘*1"!15 of the mathamatical nna]uc.i [r‘:x 18‘; bflncﬂ‘% mﬁfﬂ‘” ag wall ng nf

the numerical discretization and simulation [Gum64 Ker86]. For an excellent overview see
[Mar86, MRS90].

The stationary standard drift diffusion model for semiconductor devices stated on a bounded
domain Q C R4, d = 1,2 and 3 reads

Jp = q(DpVn+ i, nVV), (1.1a)

Jp = —q\DpVP — pppVVj, (i)

=z divd, =R, (L.i¢)
- divJ, = —R, (1.1d)
—eAV =g(n—p—C). (1.1e}

The variables are the densities of electrons n(z) and holes p(z), the current densities of
electrons J.(x) and holes Jy(z), respectively, and the electrostatic potential V(z). The
total current density is given by

Int Iy (1.1£)

The doping profile is denoted by C(z). The parameters D,,, D, pip, i1, are the diffusion coef-
ficients and mobilities of electrons and holes respectively. The physical constants are the el-
ementary charge g and the permittivity constant ¢. In the model generation-recombination
processes are included via the recombination rate R : K2 — R. Commonly employed is the
Shockley-Read-Hall term

np—n?
Tp(n+m) + 7ulp +n:)’

where the physical constants are the carrier life times 7,7, and the intrinsic density n;.
But also other recombination models are employed of which we only mention the Auger
term and impact ionization, which models high field effects [Sze81].

In the folowing we will only consider regimes in which we can assume the Einstein relations

RSRH(ni p) =

Dn= UTF'QJ DPZUTup:

where Ur = kg T'/q is the thermal voltage of the device and T denotes its temperature and
kg the Boltzmann constant. Especially in high field applications these mobilities depend
crucially on the electric field E = VV.
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To get a well posed probiem, sysiem {i.1] bas to be suppiemenied with appropriate bound-
ary conditions. We assume ihat the boundary 853 of the domain 2 splits into two disjoint
parts I'p and Ty, where I'p models the Ohmic contacts of the device and I'y represents
the insulating parts of the boundary. Let v denote the unit cutward normal vector along
the boundary. Firstly, assuming charge neutrality and thermal equilibrium at the OQhmic
contacts T'p and, secondly, zero current flow and vanishing electric field at the insulating
part I'y yields the following set of boundary data

n=np, p=pp, V=Vp onlp, (1.1g)
Vin-v=Vp-vr=VV-vr=0 only, (1-1h)

where np,pp, Vp are the H'(Q2)-extensions of
_C++/C?*+4n}
= > ,

—C +/C2+4an}
In = ) ’

=

np

AN

Vp = —Ur log (n—ﬂ?) +U, onlp.

Here, U denotes the applied voltage.

For the sake of a smoother presentation we assume in the following that the device
considered is operated near thermal equilibrium. Thus, we assume that no generation—
recombination effects are present, i.e. R = 0, and that the mobilities p,, u, are constant.
Further, we employ the following scaling

n— Cnpfl, p—=>Cnp, x— Lz,

_ . ~ Ur G, -

C —CnC, Vo Ur ¥, J@%%Jw

where I denotes a characteristic device length, C,,, the maximal absolute value of the
background doping profile and pp a characteristic value for the mobilities. Defining the
dimensionless Debye length

 gCnl?
the scaled equations read
An 4+ div(rnVV) =0, (1.2a)
Ap — div(pVV) =0, (1.2b)

~XAV=n—p—C, {1.2¢c)
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where wa sliminated the current depsities and omitted the tilde for notational convenience.

The boundary conditions transform to

1
np — c+v 45 (1.24)
—C+ \/ + 454
Pp= 2 (1.2¢)
Vp=—log (”D) +U, onlp, (1-2f)

where 8% = n;/C,, denotes the scaled intrinsic density.

To solve the modified design question we start from giver a reference doping profile C and
specify the working peint (7, J). Let I'g be a portion of the Ohmic contacts ' at which
we can measure the total current J. At this contact we prescribe a gained current density
J, and allow deviations of the doping profile from C in some suitable norm to gain this
current flow.

Haneociallv, we intend to minimize cost functionals of

i

(1.3a)

\E

’Y
Qn,p,V,C) = _"(J Jo) - V"H 1/2(ry) T ’2'
and
1 —
Qn.p,V,C) = - (T = I) - vlyspary + = | |V(C = O d, (1.3b)
9 o) * 9 Q

where the total current J is given by the solution of (1.2). Clearly, the proposed evaluation
of the total current along the boundary poses some restrictions on the regularity of the
solutions to (1.2), which will be addressed below. Here, v > 0 is a parameter which allows
to balance the effective cost. Note that we penalize large deviations form the reference
doping profile, witich has the advanitage that the overall siruciure of the device is retained
after the optimization, i.e. a transistor is still a transistor.

The optimal control problem for the system (1.2) will be considered as a constrained

optimization problem. The approach presented is closely related to that discussed by Ito
et al. [TK96] for the control of nonlinear partial differential equations.

Further analytical results related to the work presented are given by Fang et al. in [FI92),
where a mathematical model is developed for a non destructive optical testing technique
for semiconductors called laser-beam—induced currents (LBIC), and by Busenberg et al.
[BFI93], where the identifiability of defects in a semiconductor from its LBIC-image is
mathematically studied.

The paper is organized as follows. In Section 2 we specify the optimal control problem
and its analytical setting. We present an existence result in Section 3. The first—order
optimality system is studied in Section 4. After its derivation we establish the existence
and uniqueness of Lagrange-multipliers, and give estimates on the sensitivities. Lastly,
numerical results for a symmetric n—p-diode are presented in Section 5.
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a=18x10" C_
Me = 9.108 x 107" kg
h=6.625%x10"" Js -

c=3x10% ms?

Pa=nhi2nr  =hip Ax.Apzh AEAtzh

= Ve 3KT/Me)  J = -nev

Ry = {1/ne) = {1/pe)

Pn = NN Mo = N2/Na

Dellle = KT/e - E = he/A

Je = neyE + €Dg (dn/dx)

n = Ng exp —(EcEr)KT

= ’\/NCN,, exp-(EgizkTy

Vo -V = (De/pa). In(Nafrg)

E=A] {Deenp/Ly) + (Dpepr/Lo)]
Who® = (26Vo/e). [NAKNAND + Np?)]

k=138x10% K
1eV=16x10"9
£0 =8.854 x 107 %F/m
I=Nne+ Nuue

R=piA p=1/c J=cE
V= etE/m,

He = et/me | Hh = et/my
A= 'r\/c? D={A/3 ).'\/c:.Zr
T = Uene= Lype

Jh = pepyE - eDy, {dp/dx)

P = Ny exp ——(E;:—EC)IKT'.’

Vo = (KT/e). IN{NpNa/n;™)

I=1s [ exp (eVIKT) - 1]
Wn2=Wn02 (1- VNO) W= Wﬂ+WP
Wpa = (2eVo/e). [ND/(NANp + Na2)]




