THE OPEN UNIVERSITY OF SRI LANKA BACHELOR OF TECHNOLOGY – LEVEL 04

FINAL EXAMINATION - 2006

MPZ 4230 - ENGINEERING MATHEMATICS

DURATION: THREE (03) HOURS

Date: 24th March 2006

Time: 14.00 - 17.00 hours

Answer only Six (06) questions. State any assumptions, which you use.

01. Find curl F if

i.
$$\underline{F} = 3\underline{r}$$

ii.
$$\underline{F} = f(r)\underline{n}$$

iii.
$$\underline{F} = \operatorname{grad} \phi$$
, where ϕ is a scalar field.

iv.
$$\underline{F} = (3y^2 + 2z)\underline{i} + (2xy + 8z)\underline{j} + (2z^2 + 5xz + y)\underline{k}$$

here
$$\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\underline{\mathbf{j}} + z\underline{\mathbf{k}}$$

 $|\underline{r}| = \text{length of } \underline{r} \text{ and }$

 $\underline{\mathbf{n}} = \text{unit vector of } r$.

- 02. i. Show that both functions $e^x \sin y$ and $\log \sqrt{x^2 + y^2}$ satisfy Laplace's equation, $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
 - ii. Find the stationary points of the function $f(x,y) = x^3 + y^3 3(x+y)$
 - The heat generated in a resistance weld is given by $H = Ki^2Rt$, where K is a constant, i is the current between the electrodes and t is the time for which current flows. H must not vary by more than 5% if the weld is to remain good. It is possible to control t to within 0.5% and R to within 2.5%. Estimate the maximum possible variation in current if the weld is to retain its quality.

- o3. i. State Cauchy-Reimann equations for complex functions.

 Find the value of k in order that (x³-kxy-2y) may form the real part of a analytic function f(z). Show that (z²-2iz+i) is one such function.
 - ii. Find the 6th root of unity. Plot these points on the complex plane.
- 04. i. Find the Fourier series expansion of the following odd and even functions $f(x) = (x-\pi)$ is $0 < x < \pi$, period $= 2\pi$ = (n-x) is $n < x < 2\pi$
 - ii. Obtain the general solution of the following differential equation using the power series method y'' + 3y' + 4xy = 0
- 05. i. Find a vector orthogonal to (1,-2,2) and (2,-1,2)
 - ii. Determine the dimension and a basis for the solution space of the following system of equations.

$$x_1 + x_2 - x_3 = 0$$

$$-2x_1 - x_2 + 2x_3 = 0$$

$$-x_1 + x_3 = 0$$

- iii. Given the basis (1,0,1),(1,-2,1),(0,1,1) use the gram-schmidt process to obtain an orthonormal basis.
- 06 i. Find the eigen values of the matrix A given by,

$$A = \begin{pmatrix} 2 & -2 & 2 \\ -2 & -1 & 4 \\ 2 & 4 & -1 \end{pmatrix}$$

Hence obtain a matrix P such that P-1AP is a diagonal matrix.

ii. Using the result above, reduce the quadratic form $Q(x) = 2x_1^2 - x_2^2 - x_3^2 - 4x_1x_2 + 8x_2x_3 + 4x_3x_1$ to a diagonal form $(\lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2)$ and state the equation of transformation.

07. The temperature
$$\theta$$
 (x,t) satisfies the equation, $\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2}$, $\theta < x < 1$, $t > 0$ with boundary and initial conditions,

$$u(0,t) = u(1,t) = 0, t > 0$$

$$u(x,0) = 2x, \quad 0 \le x \le \frac{1}{2}$$

$$=2(x-\frac{1}{2}), \frac{1}{2} \le x \le 1$$

Find numerical solution for θ (x,t) where,

$$x = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$$
 and

$$t = \frac{1}{64}, \frac{2}{64}$$

{The explicit solution is given by, $u_{i,j+1} = u_{i,j} + r(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$ }

08. i. Use the Taylor series method to find y at,
$$x = 0.1$$
 for the differential equation,

$$y'' + (x+1)y^2 = 0$$
 where
y(0)=1, y'(0)=1. use 3 decimal places.

ii. Use a predictor-corrector method to find y at
$$x = 0.2$$
 for the differential equation, $y' = (x-y^2)$. It is given that y (0)=0. Use 3 decimal places for your workings.

The 4th order Runge-Kutta algorithm in usual notation is,

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})$$

$$k_3 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2})$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + (k_1 + 2k_2 + 2k_3 + k_4)/6$$

Where h = step size

For the Adam's – Moulton formula

Predictor:
$$y_{n+1}^P = y_n + \frac{h}{12}(23f_n - 16f_{n-1} + 5f_{n-2})$$

Corrector:
$$y_{n+1}^c = y_n + \frac{h}{12} (5f_{n+1} + 8f_n - f_{n-1})$$

- 09. i. State conditions under which the Poisson distribution is a good approximation to the Binomial distribution and conditions for the Normal distribution to be good approximation to the Binomial distribution.
 - ii. A machine produces components of which 1% are defective. A random sample of 80 components is taken. Find the probabilities of finding
 (i) no defectives (ii) less than 3 defective components in the sample, using (a) the Binomial distribution and (b) the Poisson approximation.

During a week 20 random samples of 80 components are taken. Using a Normal approximation, calculate the probability that more than half of the 20- random samples will contain no defectives.

10. i. A supplier guarantees that each box of small electronic components will contain 250 components on the average. From a large consignment of such boxes a sample of 36 are checked and the average contents were found to be 248 with a standard deviation of 3 components. At the 0.1% significance level is there any reason to reject the supplier's guarantee?

Also compute the 99% confidence interval of the population mean of the electronic components.

ii. A manufacturer claims that the average tensile strength of thread A exceeds the average tensile strength of thread B by at least 12 Kilograms. To test his claim, 50 pieces of each type of thread are tested under similar conditions. Type A thread had an average tensile strength of 86.7 Kilograms with a standard deviation of 6.28 Kilograms, while type B thread had an average tensile strength of 77.8 Kilograms with a standard deviation of 5.61 Kilograms. Test the manufacturer's claim using a 0.05 level of significance.

11. The effect of the temperature of the deodorizing process on the colour of the finished product was determined experimentally. The data collected were as follows:

Temperature	Colour
X	Y
460	0.3
450	0.3
440	0.4
430	0.4
420	0.6
410	0.5
450	0.5
440	0.6
430	0.6
420	0.6
410	0.7
400	0.6
420	0.6
410	0.6
400	0.6

- i. Plot these data on a graph paper, if it is required to predict colour from temperature.
- ii. Calculate the linear regression equation of y on x and include it on your plot.
- iii. Find an estimate of the error variance.
- iv. Test whether the slope parameter is zero.
- v. Find 99% confidence interval for the slope parameter.
- vi. From your linear regression equation, find the colour for temperature at 425.
- vii. Find the correlation coefficient between x and y. Comment your answer.

- Copyrights reserved -