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Answer ONE question from SECTION A and any FOUR questions from

SECTION B.

SECTION A:
Answer ONE question from this section.
1. With reference to the drift-diffusion model answer following questions:

(a) Due to thermal energy, the free electrons in a semiconductor possess kinetic energy.
These free electrons behaves like molecules in a gas. Using the kinetic theory of
Gases derive a formula for the thermal velocity of electrons.

(b) Derive equations for
(1)  drift current density
(i)  diffusion current density

(¢) Carrier mobility could be measured and carrier sign determined by the Hall
experiment.
Derive the necessary equations which would enable you to find the carrier mobility
using the measured values obtained in the Hall experiment.

2. With reference to the energy band model answer following questions:

(a) According to this model, is it possible for an electron in the semiconductor to have
any amount of energy? Explain you answer in point form.

(b) Why are probability functions and statistical distributions considered in this model?
Give your answer in point form

(c) Derive the equations which give the free electron/hole concentration in an intrinsic
semiconductor.




SECTION B:
Answer FOUR questions

The pages 1 to 7 of the article ‘Current-Voltage characteristics from an asymptotic.
analysis of the MOSFET equations’ by Ellis Cumberbatch, Henok Abebe and Hedley
Morris is attached for your reference. Read these pages and answer following questions.
[Please note the Appendix A mentioned in the article is not reproduced here. Assume that
all constants, variables and equations carry their usual meaning]

3. Describe in your own words (in point form)
(i) the problem considered
(ii) the solution proposed
in this article.

(2) Inthe context of the given article why is it desirable to simulate the behavior of
semiconductor devices by using a program like SPICE?

(b) List the constraints that need to be overcome by SPICE in order to simulate the
particular MOSFET device.

5. Briefly explain the approximations which are necessary to change the set of non-
linear PDEs for the electron density n, the hole density p and the electric field E into
a system of ODEs.

(a) According tc your knowledge of MOSFET's draw the characteristics that will be
accessed by the SPICE program for necessary calculations. What is the relevance of
these graphs to the ideas discussed in this article?

(b) Write the equation which gives the current-voltage relationship for the particular
MOSFET considered in 6(a).

(a) State the physical meaning of equations (2), (3), (4), (5), (6) and (7)

(b) List the unknown variables that need to be found by solving equations mentioned in

above 7(a).

8.  To find solutions for the set of differential equations given by (2), (3), (4) and (5) it
is necessary to specify boundary conditions. State the type of boundary value
problem solved and list the boundary conditions.
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Abstract

Phenomenological formulae for the current-voltage characteristics of 2 MOSFET
are derived by extending the asymptotic method of Ward {12]. Practical methods
for combining the perturbation approximations and numerically implementing the
Ward equations are developed. A detailed comparison with real MOSFET data is
presented and the model is shown to be effective over a range of device geometries.

1 Introduction

A semi-conductor chip is made by fabricating up to 10° transistors and their
inter-connections on the surface of a silicon wafer. The transistors are usually
MOSFET’s (metal-mdde—sﬂicon—ﬁeld—effect-transistors), drawn from a small
set of designs (n-type, p-type) and of various sizes (lengths and widths). Each
chip has circuit functions, and in order to design the circuits using the transis-
| tor building blocks, the VLSI industry uses a program called SPICE. SPICE
is the most common program for the simulation of electronic circuits. The
original SPICE was developed in 1971 at U.C. Berkeley, and updated versions
exist in many forms both commercial and Public Domain. See [5] for more
information. For SPICE to produce a design the software must access the
current-voltage relation for each transistor a number of times. In order that
this be effected in a reasonable time the current-voltage relationships for the
transistors must have simple form.




The classical approximation governing the flow of electrons and holes in a
semi-conductor relevant to the low field-strength operation of a transistor has
been in use for over forty years [10],[11]. It results in a set of non-linear partial
differential equations for the electron density, n, the hole density, p, and the
electric field E. Even in the time-independent case, which will be considered
here and which is sufficient for many applications, the non-linear character
and the non-trivial geometry of the MOSFET preclude approaches that would
generate exact solutions, least of all any that have simple current-voltage re-
lationships. Hence there has resuited a variety of approximate solutions. A
typical MOSFET geometry is shown in Figure 1..

The first approximation, which allows a reduction from a PDE system to an
ODE system has the designation “long channpel” or “quasi-one-dimensional”
(called 1-D in the sequel). As indicated, this approximation has validity when
the channel length, L, is relatively large. (See Figure 1 for the coordinate
system, for identification of various regions on the device, etc. Also refer to
Appendices 1, 2 for variable definitions). When voltages are applied at the
gate and or drain, electrons and holes are attracted or repelled from these
locations. The depletion region, bereft of either electrons or holes, plays an
importaznt role; a measure of its size is Ld(l‘%)% where Lp is the Debye length
and ) is o measure of the doping level relative to the intrinsic level. (X is large,
typically 106 — 107.) The ratio of these lengths, which plays the role of the
aspect ratio of the device, is
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When ¢ is small most of the region under the gateis uniform in the z, -direction
and the 1 — D approximation is exact for the fields there; the approximation
breaks down in the source-gate and drain-gate COThEIS where the fields lose
their 1— D character. When ¢ is large the corner regions influence the solution
across the whole gate region and a two-dimensional solution is required. Ward,
[12], made the 1 — D approximation into an explicit asymptotic expansion by
scaling &, the variable along the channel with L and scaling 1, the perpen-
dicular variable, with Lp. Series expansions in powers of €® give the 1 — D
approximation as the leading term of these series. In a subsequent paper, [13],
Ward obtained some solutions for the corner regions and matched them to the
1— D approximation in the central region under the gate. This enhanced solu-
tion would be expected to be more accurate down to smaller channel lengths,
but the sohition obtained is restricted to small drain voltages. For a typical
deviece Lg = 33 microns, A = 108, and for L = 10 microns, € = 0.012. For ¢
this small we expect the 1 — D approximation to be accurate; this is borne out
by the data. However we show that by adjustments of some of the parameters
we can make the 1 — D approximation match the data at much reduced chan-




nel lengths. At the time of writimg, the standard industry channel length is
0.25 micron, and the SPICE software, based on the 1-D approximation (but-
improved impirically), is still being used.

The 1 — D approximation has the descriptor “quasi” because the ODE in the
z; direction contains z, as a parameter via the quasi-Fermi potential, ¢. The
electric potential, 1, satisfies the second-order non-linear ODE in 2, which
contains ¢, and therefore its solution depends on z parametrically. The form
of p(z,) is determined subsequently when the current flowing across the de-
vice is calculated. The ODE allows one integration in the case of constant
doping. The current can then be expressed as a double integral called the
Pao-Sah integral, see [6]. An approximation allows reduction to a single in-
tegral [7]. Further approximations valid over different regimes of the applied
voltages Vg, Vgs then yield explicit formulae for 145(Vis, Vys). These latter ap-
proximations are motivated by neglect of various physical effects in one or
other regimes of operation. A comprehensive survey of these approximations
and their inter-relations is found in [11] and [4]. These separate formulae, valid
over distinct ranges of voltages, were found to be accurate for long channel
use. As the need for denser packing of transistors on chips has intensified, and
the technology has been able to satisfy those needs by reducing lengths and
widths of transistors, these formulae have been adapted in varions ways for use
at the reduced sizes. Often these adaptations are little more than “fudge fac-
tors,” which have parameters valid only over limited ranges of size and voltage
regimes. Hence these parameters are changed regime to regime (“binning”).
Current technology nses of the order of 150-200 parameters for I (Vys, Vis)
formulae for use in SPICE. Most of these Dbarameters are not universal con-
stants, and they must be “identified” for each fabrication batch. This means
considerable testing and data collection, followed by numerical optimization
for parameter identification. Al of this is expensive, both in time and money.
There are pressures to improve the models so that they are less cumbersome
and based more on physics. The work reported here, done by the Claremont,
Graduate University Mathematics Clinic for the Information Sciences Insti-
tute MOSIS Program, has these more efficient models as its goal. Related goals
were (a) comparison of the asymptotic results with data to determine the do-
main of validity of the asymptotic approximations, and (b) improvement of
solution “blending” by which solutions valid over different voltage regimes are
patched together.

The work presented in here generates explicit 145( Vs, Vis) formulae based on
the 1 — D approximation. It takes further the asymptotic results for large A
derived by Ward in (Ward 1990, 1992). These results in turn were based on
the asymptotic scheme originated by Please, [8], for the p — n junction. This
scheme, based on the matched asymptotic expension concept, {1], obtains solu-
tions valid in different regions and matches them across overlapping regions to
provide a composite expansion valid over the whole region (to the order com-




puted). In the 1 — D MOSFET approximation there are three main regions:
the inversion layer, a thin boundary layer containing a profusion of holes or
electrons under some voltage regimes, the depletion layer, and the substrate
which is determined by conditions far from the channel. The separate solutions
in these regions are, by themselves, not difficult to obtain. However, match-
ing them, and satisfying the boundary condition at the gate, are non-trivial
exercises. Ward successfully accomplished these, in [12] for constant doping
and for variable doping of constant signature, and in [13] for variable doping
of opposite signature.

The asymptotic solution achieved by Ward requires numerical work (to solve
non-linear transcendental equations) and the Ju(Vys, Vs) formula remains an
integral to be computed numerically. Hence its use in the semi-conductor in-
dustry (via SPICE) is precluded. We briefly outline Ward’s asymptotic results,
and in Section 3 we show how the Ward analysis may be taken further (in the
constant doping case) to achieve an explicit Ips(Vis, Vys) formula. Part of our
analysis is justifiable as a continuation of the asymptotics and it agrees with
the numerical solution of the exact ODE/BC system. A second approximation
is not justifiable asymptotically. It approximates by a constant a function that
is varying inside an integral; with this, though, the integral can be evaluated
analytically, and the two approximations combined to produces a formula for
the current.

2 Equations, Boundary Conditions, and the Quasi-1-D Asymptotic
Approximation

Silicon Dioxide
Metal (80,

Sourece
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Fig 1. A schematic diagram of a MOSFET.




Voltages may be applied at the source, drain, gate and substrate contacts
(S,D,G,B in Figure 1); we shall assume that the substrate and source are at
the same voltage. The voltages drain-to-source and gate-to-source are denoted
by Vas, Vg, Tespectively. We shall treat an n-channel device (in inversion the
channel is profuse in electrons). Here the silicon has been doped with acceptor
atoms (typically the number ionized is N ~ 10%—1017). Source, drain regions
have been overlaid with donor atoms (N7 ~ 10%). An insulated layer (silicon
dioxide) separates the gate contact from the silicon. As the gate voltage is
raised, holes are repelled from the region under the gate, creating a depleted
region. Further increase in Vi, attracts electrons to the insulator-substrate
interface, creating the “channel”. Voltages at the drain then cause a current
to flow from source to drain. The aim of analysis of the device is to obtain
the current created by this flow of electrons, I, as a function of the applied
voltages Vi, and V. In addition, I, also depends on the parameters of the
device: its size, the doping levels, the mobility of electrons, etc.

The standard model for the MOSFET comprises Gauss’ equation for charge

&V -E=—p=g(p—n+N) (2)

together with the drift-diffusion model for the motion of electrons

kT
i = Qpn(~ =V + nE) (3)

and the static conservation equation with no recombination /generation for the
finx of electrons

V-3, =0. (4)
The assumption that the holes remain in thermal equilibrium allows the hole
density to be obtained as

p= e IRE (3)

It is convenient, to write

n = n;el e (6)

with ¢,, replacing n as a primary variable; it is called the quasi-Fermi potential.
For other notation and definitions see Appendix A.

The boundary conditions comprise




(i) specification of the electric potential at the gate contact:
ﬂﬁ:%g—‘/}batXl:—t (7)

where V}, is the “fat-band voltage” which is a voltage that results from
terminal contacts with the substrate [10].

(ii) continuity of electrical potential and electric displacement at the oxide-
substrate interface:
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(iii) specification of the electric and quasi-Fermi potentials at the source-
substrate and drain-substrate boundaries. These are given by Ward, [12],
and will not be written out here. They are required for the specification
of 1, , at these boundaries, and they will be introduced when needed
subsequently. '

(iv) current flow occurs only across the source-substrate and drain-substrate
boundaries. A consequence of this is that that the total current flowing
across a plane z3; = const does not vary with 23 for 0 < 2y < L.

The independent and dependent variables are scaled, see Appendix B. The
differential scaling of the independent variables introduces the parameter e,
equation (1), into the field equations (2) and (4). The quasi-one-dimensional
approximation is obtained for the solution in the mid-channel region (away
from the source and drain corners) by the asymptotic expansion for the scaled
electric and quasi-Fermi potentials

w(z,y) = w’(z,y) + ' (z, y) + .. (9)

olz,y) = e (z,y) + 2o (=, y) + ... (10)

;g _The electron mobility in (3) is not necessari y constant: it may vary spatially
. “‘and with field strength. The Ward assumption is
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To leading order
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The equation for ¢° can be integrated, and with the no-flux boundary condi-
tion it follows that

oy’
d = 14
55 = 0 and o = o(y) (14)
where we have dropped the zero superscript for convenience.
The order € terms give for ¢
o+ GG 2 s (L% ) 2y
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where primes represent derivatives with respect to y. By means of an integrat-
ing factor

1 w0
%(#’n e)q)(ln(,\)wo)%%-) = xp(In(N)w’) (" + ( 8“;” +1n ()‘)(a_ —&)e)(16)

If we integrate each side of (16) from z = z* (z* is a point in the substrate
where there is no current flux across © = £*) we obtain for the left-hand side
V5N =0 (17)
as %‘i—l- = 0 when z = 0 and z = 2*. It follows that we must have

” a 7 o PR
¢+ 5o In / pn exp(In(A) (w° — ))dz)y =0

The notation

om= [ b exp(In(\)(u® ~ ¢))dz (19)
0

allows the equation determining the y dependence of ¢ to be integrated once
to give

Yomn()) = (20)
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