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Up to five questions may be attempted, selecting at least two questions from
each section. However, full credit may be obtained for exceptionally good
answers to only four questions. All questions carry equal marks.

Section A

Consider the following system equation (known as the Van Der Pol equation)
which describes the dynamics of an oscillator:
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1. Select a suitable set of state variables and express the system dynamics
in the standard state space form [£ = f(x, £, u}]. Determine its equilibrium
point(s), if any.

Study the stability of the system for small perturbations around the
equilibrium point (s) by constructing a linear model for such disturbances.

2. Consider the unforced system [u=0] before linearization. Using the
Lyaponov function ¥ = x* 4 %7 to examine its stability, show that it is
stable in the region x* < 1, for negative values of v.

3. Using a linearised model of the system for small disturbances around its
equilibrium point(s), determine whether it would be controllable in the
region(s) close to them. If only the variable x can be observed, would it be
(completely state) observable?

4. Assume that you want to measure the height of your work table, and that
you use a ruler to do so. Assume further that you decide to make a
number of independent observations to ensure accuracy, and that you
average the results of many observations to obtain a better estimate of the
height.

Obtain a recurrent relationship for the average of (k+1) observations using
the (k+1) ™" observation and the average of only k observations. If you view
this as a degenerate case of the Kalman filter, what is the state model that
you are using?. Comment on the system and observation noise and on
the Kalman gain.




Seetién B

Read the passage given in the Appendix before you attempt the questions in this
section.

5. The given text introduces the words: ‘invariant’, “attractor’ and ‘basin of
attraction’. Try to interpret these in terms that you are familiar with in
control systems.

6. What do you understand by the phrase ‘sensitive dependence on initial
conditions.'?.

7. How is chaos described in this paper? Explain in your own words.

8. The author, rather sarcastically | think, says: ‘Of course it may not model it
very well, or may even completely fail in what it set out to do, but let's not
dwell on such unpleasant topics, or the way some ‘people seem not to
care whether the rules they propose really model what they claim they
model.’

Describe any experience you have of trying to model a real system and
how well the model fitted (or did not fit) reality.




Appendix

Notebooks

Dynamical Systems (Including Chaos)
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And the future is certain
Give us time to work it out

Take your favorite mathematical space. It might represent physical variables, or
biological ones, or social, or simply be some abstract mathematical object,
whatever those are; in general each variable will be a different coordinate in the
space. Come up with a rule (function) which, given any point in the space, comes
up with another point in the space. It's OK if the rule comes up with the same
result for two input points, but it must deliver some result for every point (can be
many-one but must be defined at every point). The combination is a discrete-time
dynamical system, or a map. The space of points is the state space, the function
the mapping or the evolution operator or the update rule, or any of a number of
obviously synonymous phrases.

The time-evolution, the dynamics, work like this: start with your favorite point in
the state space, and find the point the update rule specifies. Then go to that point
— the image of the first — and apply the rule again. Repeat forever, to get the
orbit or trajectory of the point. If you have a favorite set of points, you can follow
their dynamics by applying the mapping to each point separately. If your rule is
well-chosen, then the way the points in state space move around matches the
way the values of measured variables change over time, each update or time-
step representing, generally, a fixed amount of real time. Then the dynamical
system models some piece of the world. Of course it may not model it very well,
or may even completely fail in what it set out to do, but let's not dwell on such
unpleasant topics, or the way some people seem not {o care whether the rules
they propose really mode! what they claim they model.

This is all for discrete-time dynamics, as | said. But real time is continuous.
{Actually, it might not be. If it isr't continuous, though, the divisions are so tiny
that for practical purposes it might as well be.) 8o it would be nice to be able to
model things which change in confinuous time. This is done by devising a rule
which says, not what the new point in state space is, not how much all the
variables change, but the rates of change of all the variables, as functions of the
point in state space. This is calculus, or more specifically differential equations:
the rule gives us the time-derivatives of the variables, and to find out what




happens at any later time we integrate. (The rule which says what the rates of
change are is the vector field — think of it as showing the direction in which a
state-space point will move.) A continuous-time dynamical system is called a
flow.

in either maps or flows, there can be (and generally are) sets of points which are
left unchanged by the dynamics. (More exactly, for any point in the set, there is
always some point in the set which maps (or flows) into its place, so the set
doesn't change. The set is its own image.) These sets are called invariant. Now,
we say that a point is attracted to an invariant set if, when we follow its trajectory
for iong enough, it always gets closer to the set. If all points sufficiently close to
the invariant set are atiracted to it, then the set is an atiractor. (Technically: there
is some neighborhood of the invariant set whose image is contained in itself.
Since the invariant set is, after all, invariant, the shrinkage has to come from non-
invariant points moving closer to the invariant set.) An attractor's basin of
attraction is all the points which are attracted to it.

The reasons for thinking about attractors, basins of attraction, and the like, are
that, first, they control (or even are) the long-run behavior of the system, and,
second, they let us think about dyriamics, about change over time, geometrically,
in terms of objects in (state) space, like attractors, and the vector field around
attractors. S

Imagine you have a one-dimensional state space, and pick any two points near
each other and follow their trajectories. Calculate the percentage by which the
distance between them grows or shrinks; this is the Lyapunov exponent of the
system. (If the points are chosen in a technically-reasonable manner, it doesn't
matter which pair you use, you get the same number for the Lyapunov
exponent.) If it is negative, then nearby points move together exponentially
quickly; if it is positive, they separate exponentially; if it is zero, either they don't
move relative to one another, or they do so at some sub-exponential rate. If you
have n dimensions, there is a spectrum of n Lyapunov axponents, which say how
nearby points move together or apart along different axes (not necessarily the
coordinate axes). So a multi-dimensional system can have some negative
Lyapunov exponents (directions where the state space contracts), some positive
ones (expanding directions) and some zero ones (directions of no or slow relative
change). At least one of a flow's Lyapunov exponents is always zero. (Exercise:
why?) The sum of all the Lyapuniov exponents says whather the state space as a
whole expands (positive sum) or contracts (negative sum) or is invariant (zero
sum).

If there is a positive Lyapunov exponent, then the system has sensitive
dependence on initial conditions. We can start with two points — two initial
conditions — which are arbitrarily ciose, and if we wait only a very short time,
they will be separated by some respectable, macroscopic distance. More exactly,
suppose we want to know how close we need to make two initial conditions so
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that they'll stay within some threshold distance of each other for a given length of
time. A positive Lyapunov exponent says that, to increase that length of time by a
fixed amount, we need to reduce the initial separation by a fixed factor (the time
is logarithmic in the initial separation). Now think of trying to predict the behavior
of the dynamical system. We can never measure the initial condition exactly, but
only to within some finite error. So the relationship between our guess about
where the system is, and where it really is, is that of two nearby initial conditions,
and our prediction is off by more than an acceptable amount when the two
trajectories diverge by more than that amount. Call the time when this happens
the prediction horizon. Sensitive cependence says that adding a fixed amount of
time to the prediction horizon means reducing the initial measurement error by a
fixed factor, which quickly becomes hopeless. More optimistically, if we re-
measure where the system is after some amount of time, we can work back to
say more exactly where the initial condition was. To reduce the (retrospective)
uncertainty about the initial condition by a fixed factor, wait a fixed amount of time
before re-measuring...

Sensitive dependence is not, by itself, dynamically interesting; very trivial, linear
dynamical systems have it. (Exponential growth, for instance!) Something like it
has been appreciated from very early times in dynamics. Laplace, for instance,
so often held up to ridicule or insult as a believer in determinism and predictability
fully recognized that (to use the modern jargon) very small differences in initial
conditions can have very large effects, and that our predictions are
correspondingly inexact and uncertain. That's why he wrote books on probability
theory! And as a proverb, the butterfiy effect ("The way a butterfly flaps its wings
over X today can change whether or not there's a hurricane over Y in a month")
isn't really much of an improvement over "For want of a nail, a horse was lost". (it
did, however, inspire Terry Pratchett's fine comic invention, the Quantum Chaos
Butterfly, which causes small hurricanes to appear when it flaps its wings.) No,
what's dynamically interesting is the combination of sensitive dependence and
some kind of limit on exponential spreading. This could be because the state
space as a whole is bounded, or because the sum of the Lyapunov exponents is
negative or zero. That, roughly speaking, is chaos. (There are much more
precise definitions!) In particular, if the sum of the Lyapunov exponents is
negative, but some are positive, then there is an attractor, with exponential
separation of points on the attractor -— called, for historical reasons, a strange
attractor.

Chaotic systems have many fascinating properties, and there is a good deal of
evidence that much of nature is chaotic; the solar system, for instance. (This is
actually, by a long and devious story, where dynamical systems theory comes
from.) It raises a lot of neat and nasty problems about how to understand
dynamics from observations, and about what it means to make a good
mathematical model of something. But it's not the whole of dynamics, and in
some ways not even the most interesting part, and it's certainly not the end of
"linear western rationalism" or anything like that.
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- series/atiractor reconstruction. {History. The dominant citation is to Takens's
1981 paper, which proved that it works generically. However, Takens disclaims
introducing the method. The Santa Cruz group -— Packard, Crutchfield, Farmer
and Shaw -— had the first publication, in 1980. Since Crutchfield was my adviser,
I'd like to think they came up with it. But they attribute the idea of using time-lags
to personal communication from Ruelle (note 8 in their paper), who seems to be
the actual originator.) Symbolic dynamics. Structural stability. Bifurcations. The
connection to fractals. Spatiotemporal chaos.

Uses and abuses: Military uses. Popular and Semi-popuiar views. Metaphorical

uses. Appropriation by non-scienlisis.




