The Open University of Sri Lanka

ECX5234 Data Communications FINAL EXAMINATION-2008/2009 (CLOSED BOOK)

DATE: 19th March 2009

0930 hrs - 1230 hrs

Answer any 5 questions. All questions carry equal marks.

- Q1 (a) Which of the OSI layers handles each of the following?
 - Dividing the transmitted bit stream into frames
 - Determining which route to use
 - (iii) Braking oversized message into number of smaller messages (fragmentation)
 - [8] (iv) The establishment of virtual circuits (b) How does DM (Delta Modulation) differ from PCM?
 - (c) A television signal (video and audio) has a bandwidth of 4.5MHz. This signal is sampled, quantized and binary coded to obtain a PCM signal.
 - Determine the sampling rate if the signal is to be sampled at a rate [3] 20% above the Nyquist rate.
 - If the samples are quantized into 1024 levels, determine the number of binary pulses required to encode each sample.
 - Determine the number of bits per second required to encode the signal (iii) and the minimum transmission bandwidth required to transmit the [4] encoded signal.
- Q2 (a) Assume an asynchronous communications protocol with 1 start bit, 2 stop bits, 1 parity bit, and 7 data bits. Assume that the start and stop bits are never in error, but for the remaining bits the Bit Error Probability = 0.05 (bit errors are independent).
 - What is the probability that a received word is error-free? [2] (i)
 - What is the highest possible probability of bit error if the probability that a received word is error-free must be no less than 0.80? [2]
 - What is the probability that a received word is error-free or contains undetectable error(s) or contains detectable error(s)? [2]
 - (b) Briefly explain how you can detect errors using parity check and Cyclic [3] Redundancy Check (CRC) methods.
 - (c) If the polynomial used in Cyclic Redundancy Check (CRC) is $x^4 + x^2 + 1$:
 - [1] What is the degree of the polynomial? (i) What is the binary representation of the polynomial? [1]
 - (ii) (iii) Draw the shift register implementation of the transmitter. [3]
 - If the transmitted message sequence is 10111110101001 followed by the CRC generated using the above polynomial, find the original message and the Frame Check Sequence. [3]
 - If the 5th bit from the left is inverted during transmission, show how [3] this error will be detected by the receiver.

Ų3	()	that the CSMA-CD needs a minimum frame size to be set.	[4]
		For a 1000-Mbps CSMA/CD Ethernet with 50 meters span, calculate the minimum frame size. Assume that propagation delay is 5 nanoseconds/m. Compare the performance of an Ethernet network and a Token Ring network	[4]
		during a high traffic situation and a low traffic situation. List two(2) key similarities and two(2) key differences between the classic	[4]
	(u)	10Mbps Ethernet LAN and the current IEEE 802.11 WiFi LAN standard.	[4]
	(e)	Briefly describe the "Hidden station problem" in wireless LANs.	[4]
Q4		What are the drawbacks occurred in Stop and Wait flow control method?	[2]
	(b)	Briefly explain how these drawbacks can be overcome using Sliding Windov flow control.	v [2]
	(c)	What is the relationship between the maximum window size and the sequence	e
	(d)	number in sliding window flow control? A sliding window protocol with a 3-bit sequence number is used between a	[3]
	(u)	sender (A) and a receiver (B). The sender wants to send ten(10) packets with	a
		rate of 1packet/1ms. The propagation time is 2 ms for any packet, and the time	ne
		out period is 8msec. The time for processing a packet is negligible. Assuming that Go-Back-N protocol is used with a window size of 4, show the window	3
Q5		positions (with sequence number) of A for the following succession of events	s:
		(i) Before A sends any frames(ii) After A sends frames 0,1,2 and B acknowledges 0,1 and the ACKs	[2]
		(ii) After A sends frames 0,1,2 and B acknowledges 0,1 and the ACKs received by A	[3]
		(iii) After A sends frames 3, 4 and 5 and B acknowledges 4 and the ACI	
	(e)	received by A. If the packet 3 is lost, draw a timing diagram for the above system show	[3]
	(0)	information about resending the packet from sender to receiver and ACK	
		packet in the reverse direction.	[5]
Q5	(a)	Briefly explain the concept of VPN and the reasons for its wide deployment.	[4]
	(b)	Describe 3 topologies that can improve the resilience of a Wide Area Netwo and for each topology explain their advantages and disadvantages.	гк [6]
	(c)	DNS is designed to be a distributed database as opposed to a centralized one	
	(4)	Explain the reason for this and illustrate your answer with real-world example A graphs that you are accessing the following web site: ways each mit edu from	
	(a)	Assume that you are accessing the following web site: www.eecs.mit.edu from a computer in OUSL premises. Clearly explain the steps to be followed in the	
		DNS name resolving process and the DNS servers involved. State any	•
		assumptions you make.	[5]
O 6	í. ((a) Differentiate the following:	
	•	(i) Routing vs Bridging	
		(ii) Layer 2 switch vs Layer 3 switch (iii) OSPF vs RIP	[6]
	((b) Use Dijkstra's algorithm to find the shortest path from node B to the other	-
	`	nodes in the undirected graph below. Use the table Q6 to show your answer	r.
		Link costs are as shown on the figure Q6.	[10]

Step	Nodes considered	Destination Node A		Destination Node C		Destination Node D		Destination Node E		Destination Node F	
		Cost	Path	Cost	Path	Cost	Path	Cost	Path	Cost	Path
0									10 101		
1	·				·				`		
:											

Table Q6

- (c) Compare Dijiksra's routing algorithm with the Bellman Ford routing algorithm. Will Dijikstra's algorithm and the Bellman Ford algorithm always yield the same solution? Explain your answer. [4]
- Q7. (a) Explain the meaning of CIDR and discuss the reasons for its development. [2]
 - (b) Explain the significance of "Subnetting" and "Supernetting" to an Internet Service Provider. Illustrate your answer with suitable real world examples. [4]
 - (c) A medium sized ISP has decided to allocate the following blocks of IP addresses to a set of customers.
 - i. Customer A 32 IP addresses

4]

- ii. Customer B 64 IP addresses
- iii. Customer C (A smaller ISP) 512 IP addresses
- iv. Customer D 128 IP addresses
- v. Customer E, F and G-16 IP addresses each.

It has decided to use the following IP address range for the above : 203.128.128.0/22

For each of the above customers, provide the IP address range in CIDR format and the subnet mask.

(d) Briefly explain the main features of IPv6.

[12] [2]

- Q8 (a) What would be better for the following two cases: packet switching or circuit switching? Justify your answer.
 - (i) When all the network sources send their data at a constant data rate
 - (ii) When all of the network sources are bursty (They only occasionally have data to send.)
 - (b) Consider the small network of 4 hosts and 3 links as given in the following figure Q8. A message of 1024 kbits is to be sent from A to D. The data bandwidth of the first two links is 0.8Mbyte/sec and the link between C & D is 1.6Mbyte/sec. Assume that the propagation delays of the links and the queuing delays are negligible.

- (i) Calculate the time it takes to send the message from A to D if circuit switching is used. Assume the total circuit set up time is 100msec. [3]
- (ii) Assume that message switching is used. What is the time to send the message from A to D? [3]
- (iii) If packet switching is used with a packet size (excluding header) of 128 bytes and the header size is 22 bytes, what is the time to send the message from A to D?

 [3]
- (c) For a M/M/I queue, mean number of arrivals is 300. The service time for each arrival is 3 msec. Find,
 - (i) Utilization
 - (ii) Mean number of items in the system
 - (iii) Mean time an item spends in the system. [7]

HE

iAC

)EP

CY

Fina

Dati

INS Ans