THE OPEN UNIVERSITY OF SRI LANKA

BACHELOR OF TECHNOLOGY - LEVEL 06

FINAL EXAMINATION - 2008/2009

MPZ 6231 – DISCRETE MATHEMATICS (ESSAY TYPE PAPER)

DURATION: THREE (03) HOURS

Date: 13th March 2009 Time: 0930 - 1230 hrs.

160

Instructions:

- Answer only six questions
- State any assumption you required
- Do not spend more than 30 minutes for one problem
- Show all your workings
- All symbols are in standard notation.

- 01. a) How do you explain the following propositions for the propositions p,q and r,
 - i. associative
 - ii. distributive
 - iii. De Morgan's law
 - b) Let p,q and r be three propositions. Let P denotes the propositional statement $(p \lor q)$ and Q denotes the prepositional statement $[(p \to r) \land (q \to r)]$.
 - i. Draw a truth table to calculate the truth values of P and Q.
 - ii. State whether P and Q are logically equivalent. Justify your answer.
 - iii. Using above truth table show that the propositional statement $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology.
 - c) Identify the relation between $p \oplus r$ and $\neg (p \leftrightarrow q)$
- 02. a) Prove or disprove
 - i. If x and y are real numbers. Then $(x^2 = y^2) \Leftrightarrow (x = y)$
 - ii. $\forall x \in \mathbb{R}, x^3 > x^2$
 - iii. There exists $x \in \mathbb{N}$, there exists $y \in \mathbb{N}$ such that $x^3 y^3 = 50$
 - b) Using mathematical induction prove that
 - i. $\sum_{n=1}^{\infty} k^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$ for every positive integer n.
 - ii. $n^3 + 2n$ divisible by 3 for all positive integer n.

- 03. a) i. Define $A \triangle B$ and $A \setminus B$ for sets A and B
 - ii. Without using Venn diagram show that $A\Delta B = (A \setminus B) \cup (B \setminus A)$
 - b) If $A \cap B \subseteq C$ and $A' \cap B \subseteq C$, then show that $B \subseteq C$
 - There are 50 elements in each of sets A, B and C. Find the number of elements in $(A \cup B \cup C)$ in each of following cases.
 - i. The sets are pair wise disjoint.
 - ii. There are 20 common elements in each pair of sets and no elements common to all three sets.
 - iii. There are 20 common elements in each pair of sets and 10 common elements in all three sets.
- 04. a) Define $f: \mathbb{N} \to \mathbb{N}$ by

$$f(n) = \begin{cases} n-2 & \text{; if } n \ge 6 \\ f(f(n+4)) & \text{; if } n < 6 \end{cases}$$

- i. Find f(1), f(3), f(7)
- ii. Is f a one to one function? Justify your answer.
- iii. Is f a onto function? Justify your answer.
- b) Let $f : \mathbb{R} \to \mathbb{R}$ and f(x) = 2x for all $x \in \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ and $g(x) = x^2 + 2$ for all $x \in \mathbb{R}$

Find

- i. fog(x) and gof(x)
- ii. $x_0 \in \mathbb{R}$ such that $fog(x_0) = gof(x_0)$
- iii. $x'_0 \in \mathbb{R}$ such that $fog(x'_0) = gof(x'_0)$
- c) Find $f^{-1}(x)$ for the following functions if it exists.
 - i. $f(x) = \sec x$; $0 \le x \le \pi$
 - ii. f(x) = cosec x ; $\frac{-\pi}{2} \le x \le \frac{\pi}{2}$
 - iii. f(x) = |x-1| ; $x \in \mathbb{R}$

- 05. a) Let $P = \{(x, y) \in \mathbb{R} \times \mathbb{R}$; $x^2 + y^2 = 4\}$ Does P have the reflexive, symmetric and transitive properties? Justify your answer.
 - b) Let A = {1,2,3}
 i. Give an examples of a relation define on A, that is reflexive, symmetric but not transitive.
 - ii. List all equivalent relation on set A.
 - c) Let A be the set of books for sale in certain book store and assume the among these are books with the following properties.

Book	Price in Rs.	No. of pages
P	50	100
0	125	125
Ř	80	150
S	50	200
Ť	25	100

Suppose $(a, b) \in R$ if and only if the price of book a is higher than or equal to the price of book b and the length of book a is greater than or equal to the length of book b.

- i. List the elements of R
- ii. Is R reflexive, symmetric, transitive?
- 06. a) Determine whether the following are binary operation
 - i. for $x,y \in \mathbb{R}$, $x * y = x^y$
 - ii. for non zero integers m & n, m*n = m + n
 - b) Determine whether the binary operation * defined below are commutative or associative.
 - i. * defined on \mathbb{R} by x * y = y
 - ii. * defined on \mathbb{R} by x*y = xy+1
 - c) Let M_2 (\mathbb{R}) denote the set of all 2×2 real matrices. Then matrix multiplication is a binary operation on M_2 (\mathbb{R})

Let
$$T = \{A \in M_2(\mathbb{R}) : A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$$
 for some $a \in \mathbb{R}\}$

- i. Verify that matrix multiplication is a binary operation on T.
- ii. Show that the matrix multiplication is non commutative in M_2 (\mathbb{R}), but it is commutative in T.

- iii. Show that both M_2 (\mathbb{R}) and T contain identities for matrix multiplication, but the identities are not the same.
- 07. Consider the following recursive relations

$$X_{n+1} = \lambda X_n (1 - X_n) \quad ----- (1)$$

$$Y_{n+1} = \lambda Y_n \quad ----- (2)$$

- a) i. Iterate the given recursive relations for $\lambda = 2.7$ and indicate the initial condition $x_0 = y_0 = 0.8$ (at least 5 iteration steps are necessary).
 - ii. Mathematically explain why did you use the equation $X_{n+1} = \lambda X_n (1 X_n)$ for represent to the population growth in a limited eco system without using $Y_{n+1} = \lambda Y_n$
- b) i. Graphically show that $X_{n+1} = \lambda X_n (1 X_n)$ for $\lambda = 2.8$ when n tends to ∞ , x tends to some x * value, taking $x_0 = 0.8$ and $x_0 = 0.1$.
 - ii. Do you get the same x^* value for $X_{n+1} = \lambda X_n (1 X_n)$ wher $x_0 = 0.8$ & $x_0 = -0.8$.
- Draw the bifurcation diagram and comment on the diagram when λ varies from 0 to 3.5. Using the diagram how many solutions have part (b).
- 08. A three dimensional system is governed by the following 3 differential equations.

$$\frac{dx}{dt} = x + 3y + 3z$$

$$\frac{dy}{dt} = -3x - 5y - 3z$$

$$\frac{dz}{dt} = 3x + 3y + z$$

At
$$t = 0$$
, $(x,y,z) = (1,1,1)$

Find the phase space value (x_n, y_n, z_n) for n = 1, 2, 3

- O9. a) A graph is to have 6 vertices and 9 edges and each vertex is to be of degree 2,3 or 4. What are the possibilities for the number of vertices of each degree.
 - b) Show that a tree with n vertices have exactly n-1 edges.
 - c) Is there a simple bipartite graph with degree sequence 3, 2, 2, 2, 1, 1, 1.

- Copyrights reserved -