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Three hours
Up to five questions may be attempted, selecting at least two questions from each

section. However, full credit may be obtained for exceptionally good answers to only
four questions. All questions carry equal marks.

Section A

1. Consider the following system of non-linear equations (with its origins in Bioldgy):
X = x(1- xp)
X, =X;(1-BX,)

where d and P are positive constants. Determine its equilibrium point(s), if any.

Study the stability of the system for small perturbations around the equilibrium
point (s) by constructing linear model(s) of the form

el= 1 [se)

for small disturbances about the equilibrium point(s)

5 Consider the linear system defined by the state equations:
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Itis desired to stabilise the system using state feedback, such that the system
with feedback represented by:
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has eigen values of -1 and -1. Design the state feedback controller to achieve
this objective.




3. Comment on the controllability and observability of the system governed by the -
~ foliowing state and observation equations:
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4. Consider the continuous time double integrator described by the state and.

observation equations:
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Obtain its equivalent discrete time system, if the sampling period is AT.
If we are interested in transferring the state from (2,-2) to the origin (that is 0,0)

over the time interval (0,1) while minimising the cumulative square of the effort u
over the time interval, that is:
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determine what the optimum effort u* should be.

Section B

Read the passage given in the Appendix before you attempt the questions in this
section.

5. State TWO of the main assumptions about the plant and its environment on
which the Wiener-Hopf-Kalman optimal control theory was built and ONE reason
why its problem — formulation pattern suited the problems posed by the space
program.

6. What are the assumptions regarding system and observation noise made in the
formulation of the standard Kalman filter that you have studied?

7. Why was the Wiener-Hopf-Kalman optimal control theory found wanting inthe
industrial situation? State TWO of the conditions that a satisfactory methodology
had to meet in order to succeed in such an environment.

8. Why does the text refer to the Nyquist condition for stability as “not encircling the
-~ +1 point” when it is normally stated as “not encircling the -1 point"?



Appendix: From LINEAR ROBUST CONTROL by Michael Green David J.N. Limebeer |

1 Introduction

1.1 Goals and origins of H,, optimal control

Most engineering undergraduates are taught to design proportional-integral-derivative
(PID) compensators using a variety of different frequency response techniques. With
the help of a little laboratory experience, students soon realize that a typical design
study involves juggling with conflicting design objectives such as the gain margin and
the closed-loop bandwidth until an acceptable controller is found. In many cases these
“classical” controller design techniques lead to a perfectly satisfactory solution and more
powerful tools hardly seem necessary. Difficulties arise when the plant dynamics are
complex and poorly modelled, or when the performance specifications are particularly
stringent. Even if a solution is eventually found, the process is likely to be expensive in
terms of design engineer’s time.

When a design team is faced with one of these more difficult problems, and no solution
seems forthcoming, there are two possible courses of action. These are either to
compromise the specifications to make the design task easier, or to search for more
powerful design tools. In the case of the first option, reduced performance is accepted
without ever knowing if the original specifications could have been satisfied, as classical
control design methods do not address existence questions. In the case of the second
option, more powerful design tools can only help if a solution exists.

Any progress with questions concerning achievable performance limits and the
existence of satisfactory controllers is bound to involve some kind of optimization
theory. If, for example, it were possible to optimize the settings of a PID regulator, the
design problem would either be solved or it would become apparent that the
specifications are impossible to satisfy (with a PID regulator). We believe that answering
existence guestions is an important component of a good design methodoiogy. One
does not want to waste time trying to solve a problem that has no solution, nor does one
want to accept specification compromises without knowing that these are necessary. A
further benefit of optimization is that it provides an absolute scale of merit against which
any design can be measured—if a design is already all but perfect, there is fittle point in
trying to improve it further. The aim of this book is to develop a theoretical framework
within which one may address complex design problems with demanding specifications
in a systematic way.

Wiener-Hopf-Kalman optimal control

The first successes with control system optimization came in the 1950s with the
introduction of the Wiener-Hopf-Kalman (WHK) theory of optimal control. At roughly the
same time the United States and the Soviet Union were funding a massive research
program into the guidance and maneuvering of space vehicles. As it turned out, the
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then new optimal control theory was well suited to many of the control problems that
arose from the space program. There were two main reasons for this:

1. The underlying assumptions of the WHK theory are that the plant has a
known finear (and possibly time-varying) description, and that the exogenous
noises and disturbances impinging on the feedback system are stochastic
in nature, but have known statistical properties. Since space vehicles have
dynamics that are essentially ballistic in character, it is possible to develop
accurate mathematical models of their behavior. In addition, descriptions for
external disturbances based on white noise are often appropriate in aerospace
applications. Therefore, at least from a modelling point of view, the WHK
theory and these applications are well suited to each other.

2. Many of the control problems from the space program are concerned with
- resource management. In the 1960s, aerospace engineers were interested in
minimum fuel consumption problems such as ‘minimizing the use of retrorockets.
One famous problem of this type was concerned with landing the
lunar excursion module with a minimum expenditure of fuel. Performance
criteria of this type are easily embedded in the WHK framework that was
specially developed to minimize quadratic performance indices.

Another revolutionary feature of the WHK theory is that it offers a true synthesis
procedure. Once the designer has settled on a quadratic performance index to be
minimized, the WHK procedure supplies the {(unique) optimal controller without any
further intervention from the designer. In the euphoria that followed the introduction of
optimal control theory, it was widely believed that the control system designer had finally
been relieved of the burdensome task of designing by trial and error. As is well known,
the reality turned out to be quite different.

The wide-spread success of the WHK theory in aerospace applications soon led to
attempts to apply optimal control theory to more mundane industrial problems.

In contrast to experience with aerospace applications, it soon became apparent that
there was a serious mismatch between the underlying assumptions of the WHK theory
and industrial control problems. Accurate models are not routinely available and most
industrial plant engineers have no idea as to the statistical nature of the external
disturbances impinging on their plant. After a ten year re-appraisal of the status of
multivariable control theory, it became clear that an optimal control theory that deals

with the question of plant modelling errors and external disturbance uncertainty was
required. :

Worst-case control and H., optimization

H., optimal control is a frequency-domain optimization ahd synthesis theory that was
developed in response to the need for a synthesis procedure that explicitly addresses
questions of modelling errors. The basic philosophy is to treat the worst case scenario:




if you don’t know what you are up against, plan for the worst and optimize. For such a
framework to be useful, it must have the following properties:

1. It must be capable of dealing with plant modelling errors and unknown
disturbances.

2. It should represent a natural extension to existing feedback theory, as this will
facilitate an easy transfer of intuition from the classical setting.

3. It must be amenable to meaningful optimization.
4. It must be able to deal with multivariable problems.

In this chapter, we will introduce the infinity norm and H,, optimal control with the aid of a
sequence of simple single-loop examples. We have carefully selected these in order to
minimize the amount of background mathematics required of the reader in these early
stages of study; all that is required is a familiarity with the maximum modulus principle.
Roughly speaking, this principle says that if a function f (of a complex variable) is
analytic inside and on the boundary of some domain D, then the maximum modulus
(magnitude) of the function f occurs on the boundary of the domain D. For example, if a
feedback system is closed-loop stable, the maximum of the modulus of the closed-loop
transfer function over the closed right-half of the complex plane will always occur on the
imaginary axis.

To motivate the introduction of the infinity norm, we consider the question of robust
stability optimization for the feedback system shown in Figure 1.1. The transfer function
g represents a nominal linear, time-invariant model of an open-loop system and the
transfer function k represents a linear, time-invariant controller to be designed. If the
“true” system is represented by (1+8)g, we say that the modeling error is represented by
a multiplicative perturbation § at the plant output. For this introductory analysis, we
assume that 3 is an unknown linear, time-invariant system.
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Fignre 1.17 The problem of robust stability oplimization.




Since
z={1—gki gisw

the stability properties of the system given in Figure 1.1 are the same as those given
ln Figure 1 2 in which
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Figure 1.2: The small gain problem.

the Nyquist criterion says that the closed-loop system is stable if and only if the Nyquist
diagram of hd does not encircle the +1 point. We use the +1 point rather than the —1
point because of our positive feedback sign convention. Since the condition

sup el Joria{ g

it

{(1.1.1)

ensures that the Nyquist diagram of hé does not encircle the +1 point, we conclude
that the closed-loop system is stable provided (1.1.1) holds.




