

The Open University of Sri Lanka Department of Electrical and Computer Engineering Final Examination 2008/2009 ECX6234 – Digital Signal Processing

043

Time: 1400 - 1700 hrs.

Date: 2009-03 -20

Answer any FIVE questions

- (a) Define Discrete Fourier Series (DFS) for a periodic sequence x[n] with period N using standard expression.
 Write expressions for
 - (i) $X[k] = DFS\{x[n]\}$
 - (ii) $x[n] = IDFS\{X[k]\}$
- (b) A periodic signal x[n] having a period N = 12 is defined as follows:

$$x[n] = \begin{cases} 1 & \text{if } 0 \le n \le 5 \\ 0 & \text{if } 6 \le n \le 11 \end{cases}$$

Find the values of $X[k] = DFS\{x[n]\}$

- (c) For a non periodic signal x[n] define
 - (i) Discrete Time Fourier Transform (DTFT)
 - (ii) Discrete Fourier Transform (DFT).
- (d) (i) For the signal $x[n] = 0.8^n u[n]$ find $X(\omega) = DTFT\{x[n]\}$
 - (ii) Find $DFT\{x[n]\}$ if $x[n] = \{1, 1, -1, -1\}$
- (e) What is understood by linearity? Show that the DFT operation is linear.
- 2.(a) Define following terms with reference to a discrete system:
 - (i) Discrete linear system.
 - (ii) Discrete time invariant system.
 - (iii) Causal system.
 - (iv) BIBO stability.

- (b) Determine whether the following systems are causal and BIBO stable.
 - (i) $y[n] = 3x^2[n] + 2x[n-1] + x[n-2]$
 - (ii) y[n] = nx[n] + x[n-1]
- (c) A linear time invariant system has an impulse response $h[n] = 0.8^n u[n]$. Determine the output sequence y[n] for the following inputs:
 - (i) $x[n] = 1.2^n u[-n].$
 - (ii) x[n] = u[n-3].
- (d) Calculate from the first principles, the z-transform and the region of convergence (ROC) for the following signals:
 - (i) u[n].
 - (ii) $\delta[n-m]$.

3.

- (a) Z- transform of a sequence x[n] is given by $X(z) = \frac{z(z-5)}{(z-1)(z-3)(z-5)}$.
 - (i) Give all the possible regions of convergence.
 - (ii) For which ROC is the X(z) the z-transform of a causal sequence?
- (b) Find x[n] if,
 - (i) $X(z) = -\frac{(z+1)}{(z-1)(z-2)}, \quad 1 < |z| < 2$
 - (ii) $X(z) = \frac{z}{(z^2+1)},$ |z| > 1
- (c) From the first principles prove that the z-transform of $x[n-n_0]$ is $z^{-n_0} \cdot X(z)$.
- (d) Find (i) the impulse response h[n]
 - (ii) the step response s[n] of the discrete system described by the difference equation

$$y[n] + \frac{5}{6}y[n-1] - \frac{1}{6}y[n-2] = x[n]$$

4

(a) Consider the difference equation

$$y[n] + a_1 y[n-1] + \dots + a_N y[n-N] = x[n] + b_1 x[n-1] + \dots + b_N x[n-N]$$

What can you say about the coefficients $a_1, a_2, ..., a_N, b_1, b_2, ...b_N$ if the above equation represents (i) a FIR filter?

(ii) an IIR filter?

(b) Suppose the desired frequency response of a filter is $H_d(e^{j\omega})$. The transfer function of the filter H(z) is given by

$$H(z) = A \prod_{k=1}^{K} \frac{1 + a_k z^{-1} + b_k z^{-2}}{1 + c_k z^{-1} + d_k z^{-2}} = AG(z)$$

Suppose the mean square error $E = \sum_{i=1}^{M} [|H(e^{j\omega_i})| - |H_d(e^{j\omega_i})|]^2$

E can be thought of as a function of the parameters $a_1,b_1,c_1,d_1,a_2,b_2,c_2,d_2,....,d_K$, A

The parameters for H(z) can be found out by minimizing the mean square error. (When E is minimum, the partial derivatives with respect to the above parameters become zero).

(i) Find the total number of parameters in E.

- (ii) How many equations will result in the mean square method?

 Write these equations in the general form (actual calculations are not required).
- (iii) Derive an expression for $\frac{\partial E}{\partial |A|}$.

(iv) Show that
$$|A| = \frac{\sum_{i=1}^{M} |G(e^{j\omega_i})| - |H_d(e^{j\omega_i})|}{\sum_{i=1}^{M} |G(e^{j\omega_i})|^2}$$

5. In the least square design of *IIR* filters following criteria are used:

- (i) The output of the inverse of H(z) must approximate a unit sample when the input is $h_d(n)$, where $h_d(n)$ is the desired impulse response and H(z) is the transfer function of the filter.
- (ii) Coefficients of H(z) are chosen so as to minimize the Error $E = \sum_{n=1}^{\infty} (v(n))^n$ where v(n) denotes the output of the inverse system with the transfer function $\frac{1}{H(z)}$.

Thus we can write the relation $V(z) = \frac{H_d(z)}{H(z)}$.

Assume the filter transfer function H(z) to be of the form

$$H(z) = \frac{b_0}{1 - \sum_{k=1}^{N} a_k z^{-k}}.$$

- (a) Write the difference equation relating v(n) and $h_d(n)$.
- (b) Show that $E = \frac{1}{b_0^2} \sum_{n=1}^{\infty} (h_d(n))^2 2 \sum_{n=1}^{\infty} h_d(n) \sum_{k=1}^{N} a_k h_d(n-k) + \sum_{n=1}^{\infty} \left[\sum_{k=1}^{N} a_k h_d(n-k) \right]^2$
- (c) Find $\frac{\partial E}{\partial a_i}$.
- (d) Show that $\sum_{k=1}^{N} a_k \sum_{n=1}^{\infty} h_d(n-k)(n-i) = \sum_{n=1}^{\infty} h_d(n)(n-i)$ for E to become a minimum with respect to a_i .

6.

- (a) Sketch the impulse response of an ideal low pass filter $h_d(n)$.
- (b) In order to realize the above filter as a FIR filter, it is necessary to truncate the desired impulse response $h_d(n)$.

Therefore the impulse response of the FIR filter can be written as

$$h(n) = h_d(n).w(n)$$

- (i) What is w(n)?
- (ii) If w(n) = 1, $0 \le n \le L$
 - (a) sketch $W(\omega)$.
 - (β) write the relationship between $H(\omega)$, $H_d(\omega)$ and $W(\omega)$.
- (c) Design a digital low pass filter using window techniques, to meet the following requirements:

Pass band = 3 kHz

Stop band = 6 kHz, with at least 30 dB attenuation.

Sample frequency = 30 kHz.

- (d) How does the length of a window affect the transition width $\Delta \omega$ of the filter?
- 7.(a) Consider the discrete, linear time invariant system given below:

- (i) Explain different functional elements of the system.
- (ii) By selecting the outputs of the unit delay elements 1 and 2 as state variables (as shown in the figure), find the state space representation of the system.
- (iii) What is understood by a unit delay element?
- (b) Briefly explain TWO digital signal processing (DSP) techniques used in restoration of an old image.
- (c) (i) What is a Kalman filter? Describe the function of a Kalman filter.
 - (ii) How does the filter calculate the best value for the input estimator \hat{x}_k ?

8.

(a) A sampling sequence $\delta_D[n]$ can be written as

$$\delta_{D}[n] = \begin{cases} 1 \text{ if } \frac{n}{D} \text{ is an integer} \\ 0 \text{ otherwise} \end{cases}$$

If the sampling- and sampled sequences are x[n] and v[n] respectively

- (i) write the relationship between $\delta_D[n]$, x[n] and v[n].
- (ii) show that $V(z) = \frac{1}{D} \sum_{k=0}^{n-1} X(e^{j\frac{2\pi k}{D}}.z)$.
- (b) Consider a sinusoidal signal $x[n] = 2\cos(0.1 \pi n)$

Determine the frequency spectrum of the signal $v[n] = \delta_3[n]$. x[n]

(c) Zero order hold (ZOH) is used as a reconstructor. It takes a numerical sequence y[n] and outputs a continuous time signal y(t).

ZOH is linear and uses the interpolating function g(t) (to provide interpolation between the samples). To find y(t) first we weight each y[n] using $g(t-nT_s)$. Then all the weighted y[n]'s are added together to form y(t).

- (i) write the relationship between y(t), g(t) and y[n].
- (ii) Show that $Y(\omega) = G(\omega)(\sum_{n=-\infty}^{\infty} e^{-j\omega nT_x} y[n])$. $Y(\omega)$ and $G(\omega)$ are the Fourier transforms of y(t) and g(t) respectively.

Supplementary material

(a) Window functions

Window type	w(n)	Δω	Attenuation
Rectangular	1	$\frac{4\pi}{N}$	-13dB
Bartlett	$\frac{2}{N-1} \left(\frac{N-1}{2} - \left n - \frac{N-1}{2} \right \right)$	$\frac{8\pi}{N}$	-27dB
Hanning	$0.5 + 0.5\cos\left(\frac{2\pi n}{N-1}\right)$	$\frac{8\pi}{N}$	-32dB
Hamming	$0.54 + 0.46\cos\left(\frac{2\pi n}{N-1}\right)$	$\frac{8\pi}{N}$	-43dB
Blackman	$0.42 + 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{2\pi n}{N-1}\right)0.42 + $	12π N	-53dB

(b) Some important Z-transforms

Function	z-transform	ROC	
$\delta[n]$	1	All z	
u[n]	$\frac{z}{z-1}$	z > 1	
$a^nu[n]$	$\frac{z}{z-a}$	z > a	
$-a^nu[-n-1]$	$\frac{z}{z-a}$	z < a	
nx[n]	$X\left(\frac{1}{z}\right)$	$R' = \frac{1}{R}$	
x[-n]	$-z\frac{dX(z)}{dz}$	R'=R	
$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	$R' = z_0 R$	
$e^{j\Omega_0 n}x[n]$	$X(e^{j\Omega_0 n}z)$	R'=R	

X(z) is the z-transform of x[n]. R is the ROC of X(z)