THE OPEN UNIVERSITY OF SRI LANKA FACULTY OF ENGINEERING TECHNOLOGY BACHELOR OF TECHNOLOGY – LEVEL 05 FINAL EXAMINATION– 2008/2009

MEX5231 – APPLIED THERMODYNAMICS

DATE

24th MARCH 2009

TIME

1400 HRS. - 1700 HRS.

DURATION

THREE HOURS

ANSWER FIVE QUESTIONS ONLY. ALL QUESTIONS CARRY EQUAL MARKS.

Density of water = 1000kg/m^3 . Acceleration due to gravity = 9.81m/s^2

- 1. A refrigerating system operates with a condensing and evaporating temperatures of 30°C and -5°C respectively. The corresponding pressures are 1.2MPa and 0.35MPa. The temperature of the refrigerant at the throttle valve entrance is 25°C and the vapour is 0.97 dry before leaving the evaporator. Determine,
 - (i). the condition of the refrigerant entering the evaporator
 - (ii). the coefficient of performance
 - (iii) the mass of cooling water used per kg of refrigerant for the condenser, if the temperature rise is to be restricted to 20°C

The properties of refrigerant

The brobern	es of terrigera	lll				
P	T	$h_{\mathbf{f}}$	h_{g}	$S_{\mathbf{f}}$	s_{g}	
(MPa) °C		(kJ/kg)	(kJ/kg)	(kJ/kg.K)	(kJ/kg.K)	
0.35	-5	157.31	1436.7	0.6266	5.3977	
1.0	25	298.25	1463.8	1.1210	5.0293	
1.2	30	322.42	1466.3	1.2005	4.9738	
1.2	40	-	1495.4	-	5.0564	
1.2	50	-	1525.1	-	5.1497	
1.2	60	-	1553.3	-	5.2357	
1.2	70	-	1580.5	-	5.3159	

For water $C_p = 4.2 \text{ kJ/kg.K}$

- 2. In a stage of an impulse turbine provided with a single row wheel, the nozzles are inclined at 20° to the plane of the wheel. The blade rotor with diameter 955mm rotates with a speed 3000rev/min. Determine,
 - (i). suitable inlet and outlet angle for the moving blade so that there is no axial thrust on the blade. It may be assumed that friction in blade passage is 19% of the kinetic energy corresponding to relative velocity at inlet to blades.
 - (ii). power developed by blading for a steam flow of 1kg/s.
 - (iii). kinetic energy of steam finally leaving the stage.

- 3. In a single heater regenerative cycle the steam enters the turbine at 30bar, 400 °C and the exhaust pressure is 0.10bar. The feed water heater operates at 5bar. Determine,
 - (i). the efficiency of the cycle.
 - (ii).the increase in mean temperature of heat addition, efficiency and steam flow rate when compared with a Rankine cycle(without regeneration).
- 4. The following observations were made at a trial o a gas turbine set having a heat exchanger and running the at the design speed:

Isentropic efficiency of the compressor = 80%
Isentropic efficiency of the turbine = 85%
Combustion efficiency = 95%
Pressure ratio = 5:1
Mass flow of air = 20kg/s
Heat exchanger effectiveness = 80%
Maximum cycle temperature = 725°C

The ambient temperature and pressure of air are 15°C and 1bar respectively.

Determine,

- (i). the power output
- (ii).thermal efficiency of the cycle
- (iii). specific fuel consumption

Assume that there are no pressure losses in heat exchanger and combustion chamber. Take Calorific Value of fuel as 43500 kJ/kg, $C_p=1.05 \text{kJ/kg}$.K and $\gamma=1.4$.

5. In a gas engine producer plant the volumetric analysis of the produced gas and of the engine exhaust gas were as follows:

Substance	CO%	H ₂ %	CH ₄ %	C ₂ H ₄ %	CO ₂ %	O ₂ %	N ₂ %
Producer gas	20.5	12.5	3	0.5	7.5	0.2	55.8
Exhaust gas	-	-	-	-	10.7	8.3	81

Find the chemically correct volumetric analysis of the producer gas and the percentage of excess air supplied to the gas engine.

6. Starting from the basic equation with usual notation, $V_t = \sqrt{2000 \times (h_1 - h_2)}$ and assuming frictionless adiabatic flow through a convergent divergent nozzle, show that the velocity of steam at throat for maximum discharge is given by

$$V_t = \sqrt{2000 \times \frac{n}{n+1} P_1 v_1}$$

Where n - the index of expansion

P₁ - Initial pressure of steam in kPa

 v_1 - Initial specific volume of steam in m³/kg

40kg of steam per minute is discharged from a convergent divergent nozzle. The Pressure and Temperature of the steam supplied to the nozzle is 10 bar and 200°C respectively. Determine the velocity of the throat and the throat area. Index for the expansion can be considered as 1.3.

Show that the amount of heat transfer through a hollow sphere of internal radius r_I , external radius r_I and inner temperature t_I , outer temperature t_I , is given by $Q = \frac{\left(t_1 - t_2\right)}{\left(\frac{r_2 - r_1}{4\pi k r_1 r_2}\right)}$

A hollow sphere of inside radius 40mm and outside radius 60mm is electrically heated at the inner surface at constant rate 10^5W/m^2 . At the outer surface it dissipates heat by convection into a fluid at a temperature of 100°C and a heat transfer coefficient of 450W/m^2 .K. The thermal conductivity of the solid is 20 W/m.K. Calculate the inner and outer surface temperatures of the sphere.

8. A 150mm outer diameter steel pipe lies 2m vertically and 8m horizontally in a large room with an ambient temperature of 30°C. If the pipe surface is at 250°C and the emissivity of steel is 0.60, calculate the total rate of heat loss from the pipe to the atmosphere. Properties of air at 140°C are $\rho=0.854$ kg/m³, Cp = 1.01kJ/kg K, $\nu=27.8*10^{-6}$ m²/s and k = 0.035W/mK, Pr = 0.684.

The following relationships are given with usual notation.

$$Gr = \frac{g\beta\theta L^3}{v^2}$$

$$Gr_d = \frac{g\beta\theta \, D^3}{v^2}$$

For Turbulent flow

$$Nu = 0.13(Gr \times Pr)^{\frac{1}{3}}$$

For Laminar flow

$$Nu = 0.53(Gr \times Pr)^{\frac{1}{4}}$$

ALL RIGHTS RESERVED