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THE OPEN UNIVERSITY OF SRI LANKA
BACHELOR OF TECHNOLOGY (level 05)
ECX 5241 | S,
DISTRIBUTED PARAMETER SYSTEMS T2
FINAL EXAMINATION 2009

DATE : 14" March 2010 TIME : 09.30 - 12.30 hours

Select ONE question each from Sections A and B and answer all questions
in Section C.

SECTION A: _
Select ONE question

Al.
The temperature distribution between the region of two concentric spherical surfaces of
radii 7y and 72 (71> 72) s given by the scalar field
T= -(@7%/2) + bcosB where a, b are constants and 7 is the distance from the
centre of the concentric spheres to the point at which the temperature is considered.
At the same point the heat flow vector is given by the expression
h = a,c in which ¢ is a constant,

(the volume and the surface area of a sphere of radius r is (4/3)nr* and 4nr? respectively)

(i) Tf h=-KVT where K is the thermal conductivity; find K in terms of a,b and

c
(i)  Verify the. divergence theorem for the heat flow vector h for the region
enclosed between the two spherical shells
(iii)  Find the Laplacian of T (AT) 7
(iv)  Comment about the solenoidal/irrotational nature of the heat flow vector h
(20 marks)

A2.
An incompressible fluid of constant density has a scalar velocity potential
¥ (z,y,2,t)= (3 +2)(yl)

(@) Find the fluid velocity vector v associated with this potential, if v=- V¥
(i) Find VxvandV v
(@iii) If the condition of incompressibility is V » v = 0, write the Laplace’s equation
for the fluid
(iv)  Comment about the solencidalfirrotational nature of the velocity vector v
(20 marks)



SECTION B:

Select ONE question

Bl.
Suppose in a situation where within a very long region of cylindrical shape of radiué::
(i.e. the length of the cylinder [ >> b) there exists a vector field P =Py a, for ’r‘<b__zind
outside the cylindrical region, i.e. when 7>b the vector field P = 0. 7 is the distance from
the axis of the cylinder to a point on a plane, perpendicular to the cylindrical axis.

3] By applying Stoke’s theorem find a vector field Q inside and outside of the
cylindrical region, such thatP= Vx Q
(i)  Venfy by direct differentlation that V x Q is equal to the specified value of

(20 marks
B2,

Time varying electromagnetic fields in free space could be described by followmg
Maxwell’s equations:

VxH=J+0D/dt.......... 1)
VxE=-3B/at

VeB=0

V-E=0

Simnce J= o E, D =g E and B = yop H we could write equation (1) as follows:

VxH=0cE+gedE/dt
' =(o+ged/ot)E ... 2}

In the case of good conductors, the conductivity ¢ >> g& and we could write equation (2)
asVxH=¢E.... (3)

Using equation (3) and the remaining of Maxwell’s equations, derive expressions which -
‘relates the time and the space rates of change, in the case of good conductors for

(@) the electric field E
(i)  the magnetic field H
(20 marks)
Hint;

Vx(VxA)= V( V+A)-V?A
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SECTION C:
Answer all questions

Read the attached article “The vibrating-membrane problem - based on basic pr_inciples
~ and simulations’ by Hermann Hirtel and Emesto Martin and answer following
questions.

Cl.

Briefly explain in your own words the problem addressed in this article. Comment about

the type of problem addressed (distributed/lumped parameter sysiem) here.
' : < (10 marks)

C2.
A student for Assignment 2 of ECX5241 derived the mathematical equation which
. explains small transverse vibrations of a thin rubber sheet — a membrane which has been
stretched over a large horizontal frame (like a drumhead) Her answer is reproduced on
pages 8 to 12 for your reference.

State all assumptions that should be done about the membrane at the problem statement
and during derivation. What are the limitations of the mathematical model used to model
the vibrating membrane? '

(10 marks)

C3.
Llst in point form the steps you need to follow to solve the equation derived in question
2, using the ‘pdetool’ of MATLAB (10 marks)
- C4, ,
What is the method used in MATLAB to solve partial differential equations? (5 marks)
Cs. _
How does the xyZET simulation tool mentioned in the article solve vibrating membrane °
. problems? _ - (5 marks)
Cé6. :
~ According to 'the article, how does the simulation results compare with the theoretical
tesults for vibrating membrane problems? (5 marks)
C7.

" According to the authors of this article, what are the advantages of xyZET when
- compared with other simulation tools for the same purpose such as Mathematica, Derive
or the one you have used “pdetool’ in MATLAB? ,

(15 marks)



The vibrating-membrane problem - based on basic
principles and simulations

Hermann Hirtel ! and Ernesto Martin?
1 1PN - Institute for Science Education, D-24098 Kiel
2 Universidad de Murcia, E-30071 Espinardo, Murcia

Abstract

Rectangular and circular membranes have been modelled as discrete arrays of mass points connected by mas
less springs. Bused on Newton’s principles and Hooke’s law, the movemeat of such membranes has been simu-;
lated. All vibrational modes, as known from closed form soluetions of the comesponding wave equations, can be:
excited, with deviations from theoretical values of no more than a few percent. This approach can be used to
develop an intuitive understanding of vibmting membranes. The phenomenon of regular vibrational modes pro—'_
vides a suitable starting point for a thorough mathematical treatment.

Tn a more general sense this topic demonstrates the possibility that elasticity is no longer a matter of high math—
ematical demand. The true nature of the “rigid body™ as an unrealistic but perfect model can convincingly be dem-

onsirated.

1. Introduction

As has been demonstrated recently, the vibrating-mem-
brane problem can be used as a rather appropriate example
to demonstrate the power of computer algebra systems
(CAS) like Axiom Maple, Mathematica, Derive etc. [1].

This approach, however, depends on a well-developed
mathematical ability on the part of the learner and on his or
her willingness to accepl such an abstract and demanding
path of explanation, where the solution of differential
cquations serves as a description of real world phenomena,
in this case the vibrating modes of an elastic membrane.

In the following we would like to show that the same
results can be achieved with much less mathematical effort
and in a more direct fashion, based only on Newton’s prin-
ciples and linear elastic forces.

2.  Theoretical Background

Our system consists of & plane membrane, in principle
of any shape, homogeneously stretched by a tension T,
given as force per unit [ength. The membrane has a mass p
per unit area and the boundary is clamped.

For small vibrations and in the absence of external
forces the wave equation, describing the motion of the dif-
ferent points (coordinates x, y in the plane of the mem-
brane}, is [2]:

2 2
g ds _ 1 ds
T aé’- v2 at

2. 2 _ 32 32.
V7is the Laplace operator, V' = —+— in
gx~ gy

tangular co-ordinates x, y, and v= /T/} is the velocits
the waves in the elastic membrane. We have denoted
sfx,y.?) the transverse displacement of any point relative t
the position when the membrane is at rest. -
For membranes held along the edge (s=0, as buundnry
condition), we have to find standing-wave solutions of th
wave equation which have nodss along the boundary of'
membrane. For simple shapes (rectangolar or circul
membranes), the standing wave solutions or normal modg
of vibration arc usually worked out using a set of curvilin
ear coordinates in which the edge of the membrane forms
one of the coordinate axes. In many cases we can use se"
aration of variables which simplifies the problem.
In the following the main characteristics of the mode:
for the rectangular and circular membranes are described
With our simulation tool xyZET [3] we can in prineipl
experiment with membranes of any shape. The results i
this article, however, are restricted to rectangular and cir
cular geometries which allows us to compare our sim
lated results with theoretical solutions of the related wavB
equation. :




cclmlg wlar Membrane (borders fixed: s=0 in x=0,a

d y=0,b)

y separating the variables (s=X(x)Y(y)exp(int), the
4ding wave modes for this case can be expressed as fol-

a(k.x)- sin(kyy), multiplied by a harmonic time
ﬁd'ence sin{mgt), where the resonance frequency, e,
depend on the mode of vibration (values of k,, k)

a boundary conditions require that k,, k, can have
L . N _mr _nr
;};e:followmg values: k, = Py ky =3 where m,n

moda indexes) can take only integer values, _
The resonance frequency for this (m,n) mode will be

RG]
v T71.

reular Membrane (border fixed: s=0, for r=a)
this case we can use polar co-ordinates (r,8). The spa-
il part of the wave function will be of the form R(r)@(6).
boundary conditions will act specifically on R(r)
ch will be a Bessel function J,(kr) with zeros at well
ywn (tabulated) values x,,,, (m for the fanction and n for
th. zero).
This leads to the relation ka=x_, to force a zero at
e fadius of the membrane. This results in the follow-
lation for computing the angular frequency associ-
vith the different modes:

. v )

S

» where v is the velocity of the wave in the

;1) = I (k,, r)cos(mB) cos(@ t).

ependence with sin(m8) is also possible, giving rise
existence of 2 degenerate modes for each m (except
or m=0). In general, a linear combination of both modes
be excited. .

The simulation program xyZET

IPN, a simulation program, named xyZET, has been
cloped whose key feature is the visualization of inter-
2 objects in 3d ! [3] [4]. The effects of all classical
8 can be simulated,

The implemented algorithm is force based. For each
le particles of all those placed within the cube, the sum
tall applied forces is determined. By integrating Newtons
cond law stepwise, the acceleration, the change in veloc-
and the resulting displacement is calculated and dis-

I?ﬂmﬂ version download: hitp:/fwww.ipn.uni-kicl.de/eng-
ish/projekte/a/a7. lixyzet/mainpage e.htmi
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played by deleting and redrawing the particles at its new
positions.

Figure | shows circular and rectangular membranes as
modelled in xyZET, where the particles at the border are
fixed and all particles are connected by springs with their
nearest neighbours. '

Placing particles and connecting particles by springs is
done by repetitive mouse clicks. The cube which sur-
rounds the objects can be rotated to show the system from
different perspectives.

All relevant parameters such as charge, mass, spring
constant and spring length can be set and an external elec-
tric field can be simulated, changing in time azd with var-
iable intensity, period and direction.

Membranes as modelled within xyZET

Figure 1
4, Expeﬁments

To compare the simulation results from xyZET with
those predicted theoretically, we have experimented with
rectangular and circular membranes.

To do this, the mechanical chamcteristics of the mem-
brane like tension T, and density i, have to be determined.
This information can be obtained from data available
within xyZET. ’



Once these values have been measured, the wave veloc-
ity, v, in the membrane, the eigenvalue and eigenfunction
{resonant frequency and spatial distribution) for every
mode can be computed as shown in the previous para-
graph.

Results for a rectangular memmbrane

The membrane we used was made up of 21x2] parti-
cles, homogeneously distributed in a rectangular pgrid.
From the measured values for tension T and density 1 the
wave velocity for mode 11, 21 and 33 was computed as
well as the resonant frequencies @y of the different modes.

By charging a few single particles, positioned at sym-
metry points of the expected mode and applying an exter-
nal electde altemating field with my as frequency, the cor-
responding mode can be excited.

The agreement between the calculated resonant fre-
quencies and the one measured with xyZET is between 3
and 5% for the lowest order modes. The spatial distribution
of some of these modes are shown in Figure 2.

H
LY
“M'?

_ mode 33
Display of the vibrating membranc for different

Figure 2
modes

Results for a cirenlar membrane
The membrane we used was again made up of 21x21
particies, homogeneously distributed over a circular area.

The modes displayed in Figure 3 were excited and its
velocity compared with the theoretical values.

mode 11

Figure 3 Display of a circular membrane vily

different modes )
The differences between the simulated and th

results was always less than 6%, g

5. Discussion

Didactical aspects

The topic “vibrating membranes” is a specific ona
primarily only of interest for a specialised branch of¢
neering. For lectures in physics this topic is usually
aside due to the high demands of mathematics necdad
the experimental difficultics to demonstrate the regy
ties of different vibrating modes. Lo

Both these limiting factors have vanished. The pow:
modern computers allows to demonstrate all kinds of
ularly or iregularly shaped membranes in their diff
vibrting modes in an effortless way. The question ¢
fore has to be posed if this topic has some general did
cal value and relevance.

We sce two aspects: 1. With the support of mo
computers the behaviour of extended clastic objecty
easily be integrated in the physics curriculum. Nowa
extended objects are most of the time treated a§ 1
which implies certain problems [5]. The model of the ]
baody is an artificial one, neglecting internal processes

- relying on non-causal distributions of forces. The' t

ment of extended bodies in physics could therefori
enriched if such objects would not only be presente
rigid but also a3 elastic - their real and only nature, -
2. The whole is more than the sum of its parts.,’
basic statement can be visualised in a rather convin
and surprising way by applying our method, descr
above. When exciting for instance a single point in the
tre of the rectangular membrane (fig 1 below) with an 't
trary frequency, some irregular vibrations of the comg
membrane are displayed and regular pattern, if at afl -
ble, show up only for short moments in time. But if the
quency is one of the eigenvatues of the membrane, the
vibrations around the excited particle at the centre slo
but irresistibly transform to a vibrating mode which «
trols every single particle of the membrane in a coc
nated way. Such a mode is a property of the complets’
tem. It cannot be derived from properties of its parts ar
is more than the sum of all these individual properties.
We dare to mention that our swinging membranes
not only conectly represented but are nice and attractiv
lock at. This fact cannot be a substitute for learning pl
ics, but it will never barm and may be more important
motivation than often acknowledged. '
Besides these general aspects a more specific p
deserves to be mentioned: the good agreement betwet
simulated membrane, modefled as a system of disc
parts and the theory, based on a continuous distributior
matter. This aspect is discussed in the following paragra

Explanation of the difference between theory and s
ulation

Resuits from theory and our simulation differ due 1
number of factors. )



First, the measurement of the resonance frequency car-
ries a1 experimental error due to the method used. Reso-
ance is detected by observing the shape of the space dis-
m‘buunn of the vibrating elastic plane, and although this
liape and the associated amplitude are very sensitive to
frequency variations, we estimate an error in this measure-
nent of the order of 1%.
* gecond, our model is a discrete one while the theory is
ed on a continuous mass distribution. Since at vibrating
modes of higher order the spatial distribution of mass var-
5 more strongly, the difference between the “continuous™
theory and the discrete model should increase with modes
»Fhigher order. For a linear string, modelled by elastically
'gunacied mass points with the same spatial distribution as
ur plane, we computed this expected tendency with a
mnxlmum deviation of 1% for the 3rd. order mode {fora
tring made up of 21 particles).
‘A third reason for the difference between theory and
experiment can be found in the fact that the theory does not

rather small amplitudes. The theory also does not take into
iceount the fact that for larger amplitudes the displace-
ments do not only occur perpendicularly but also to a small
egree in paruliel to the plane. Since we need larger ampli-

expected that our simulated model results in the same val-
e us those derived from the idealized theory.

Finally, the membranes we used in our simulation with
frcular planes did not have a precisely circular shape. This
1ls0 may explain some of the difference between theory
ond experiment. ,

Jasic laws and numerical solations as added value
- Traditional methods for teaching topics like "oscilla-
'_ons and waves” are charcterized by doing experiments

xperiments should be carried out whenever possible, and

tuke into account the vanation of tension in Sme within.

tudes to measure the resonance frequency, it canoot be .
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a thorough theoretical treatment is necessary. Depth and
direction of this theoretical treatment, however, are open to
discussion. '

Besides looking only for closed form solutions of wave
equations in 2 dimensions (Bessel functions in cylindrical
coordinates), a more direct and much simpler path is now
opened by starting from Newton's basic principles and
Hooke’s law and by looking for the corresponding numer-
ical solutions, visualized on a computer screen.

Furthermore, this approach allows for a broad spectrum
of exploratory actions. Direct feedback is received when
changing the shape of the plane or internal parameters such
as mass distribution and tension. This ofTers the possibility
of building up an intuitive knowledge base about the
behaviour of membranes as a starting point for the mathe-
matical treatment.

We therefore see this approachi not as an alternative but
as an enrichment to the traditional method. The relation
between cause, condition and effect is shown in a more
direct manner and is offered for experimental exploration.
Furthermore the comparison between our numericat solu-
tions and the closed form solutions offers the epportunity
to develop methodological knowledge of higher order.
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Deflection of a Stretched Membrane.

Here we will be considering small out-of-the plane deflections (deflections
perpendicular to the initial plane of the membrane) of a circular membrane...
A drawing of a circular membrane subjected to uniform tension is given below...

Circular membrane

Differential element

\ (r+dr)do 1

Fi e -
» The deflections of the planar membrane from its equilibrium position will be
considered as z(r,0,t). ' _ _
» To avoid complexity a force acting normal to the surface of the membrane is
considered here. ,
»  Such a force, causes the membrane to bulge in its direction and reach a new
equilibrium state as given in ‘Figure — 2°.

A

———

Initial state

o ——————

- F
After applying the force ‘E7
at point ‘A

Figure - 2

The only restoring force present in the membrane is the in-plane tension
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) - T(r+dr)d@= TrdG+Tdrd0 ~ Trdg
Figure - 3

Using Newton’s Second Law on the above differential element we can obtain the
equations governing the deflection of the above considered membrane

Deriving the equations governing the behavior of the membrane...

First, the forces in a plane ‘0 = constant’ are considered as in ‘Figure-4°.

oy
: :{/ T r+tdr ra
Trd@ Figure - 4 ;
Small deflections are considered,.
: oz oz
Hence ; rsing ~rtang, =r==r2%
! s o > (2
. oz oz
rsina, =~ rtana, =r—=r—
ar r+-dr
2 (3

Expanding equation (3) around ‘r’ using Taylor series, we obtain the approximate
value for (3)as...

-_ | 2 A2
rgz_ ~ r—(?E +(r+dr—r)~§~(r@-) + dr 62 (r 82] +hot
o or or\ or), 2 ar*\' or), |

r+dr r

9



h.o.t-higher order terms , :

Higher order terms are neglected, only 1°° order
term of ‘dr’ is taken in to account ...

Then;

. 0z
rsing, = rtana, =r—

_9 .
or (4)

r+dr

Substituting (2)}&(4)in (1)...
T =F, =Tdo[-rsine; +rsina,]

T>F =Tdé L] +dr—a-(ra—zj =Tdé drua—( B_ZJ

, or|, or| or\ or) | - or\ orj, |
- TF =T'-?—[r§5) dedr -,

-ar\ or))| '

The forces in a plane ‘r= constant’ which is normal to ‘9= constant’, are considered -
as in ‘Figure-5°, ‘

Fig;re - B

Sy
Td B 0+dd g

T S F, = -Tdr(sina,) + Tdr(sina,) = (¢

Small deflections are considered,

. ' &Z oz
Hence ; sina, ~tang, = — =22
%= T e T dl, > (7
. .0z oz
Sina,, =~ tano, =—=——
réo6é rog

&1+d6 _) ( g

As earlier getting the “Taylor series expansion’ of (8) around ‘0’ and neglecting its
higher order terms, we obtain. ..

10
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As earlier getting the ‘Taylor series expansion’ of (8)
around ‘0’ and neglecting its higher order terms, we

obtain... .
_oz| 2| ,o(exY _ez| .o
sina, ~tana, = 198),,4, 100), a6 ae[raej " o), dgraezL, 23
_‘Substitutlng (7)&(9) in (6)..
. oz oz ozl |
TS F, =Tdr|-(sine.) +(sine, )| = Tdr| - 22| + 22
Z 2 [ ( 3) ( 4)] rag . ragg ragzg

*SF, = T—{a dadr |
o - (10)

Consider the mass per unit area of the membrane as ‘.

‘Then the mass of the differential element considered ..
m = o(dr)(rd9)

Applying ‘Newtons Second Law’ to the differential element
ZF=ma .

F-force applied m-mass of the element a-acceleration

F = F1 + F2 = [o(dr)(rd0)](a)

Substituting values for F1 & F2 from (5) & (10)

2
—(rm) dodr+ 722 dadr
20

ro oG g

2
: r* 067,

2 2
rdédr + Lg-— rdédr = ordrd@ Zt ]

N 1 0%z o ﬁ{
r* 06* T\ ot
1 6%z

B 82" 10z 1
T 6t2 rar r’ 06°|,

1(0°z | T
VzZ_'}‘[ﬁ]%(ll) c

(o}

1 0%z

A 0%z
r* 06?|,

] +
2
c’irr

I
l

11




Similarly for a rectangular membrane we can obtain the governing equation in
rectangular coordinates as...

CZ

C=.—
. o
sz = 512'211‘

This is considered as the “wave equation

12




VECTOR RELATIONS

DIFFERENTIAL ELEMENTS OF VECTOR LENGTH
a,dx + a,dy +a.d:z

dl ={a,dp + agpded + a_dz
a, dr + agr df + agr sinf d¢p

DIFFERENTIAL ELEMENTS OF VECT OR AREA

a; dy dz +a) dxdz + a.dx dy
ds = appdtf)dz + agdpdz + a. pdpdd
a,r2sin @ d6 d + agr sin@ dr dd + aer dr df

DIFFERENTIAL ELEMENTS OF VOLUME

dx dy dz
dv = {-pdpdd dz
| rtsin@ dr d0 d¢

VECTOR OPERATIONS —RECTANGULAR COORDINATES

da da da
= +a,— + a8,
Va= a o a, 3y e

: dAx A, dA;
. = 3 + -
VA ax + ay dz

oA, o4, dA.  9A, dA,  9A,
VxA=al T TG T ax ax  ay
o N a e

VZa= =V-V
« %2 + c?y2+ Eyo ra

VA= a, VA, +a,V2A; + a,V?A, =V(V-A) —V x (V X A)

13
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| S cos o\x d\x ._.' smaoc-/a

VECTOR OPERATIONS —CYLINDRICAL COORDINATES
. { c? a da
4, pa q': A 9z Z
1 BAQ (_9&
pdg

19A; = 4y dA dAa. I{ a
VXA=ay-——=— )+a(-—-—£——-——)+a.—-(— Ag)

fa
Va:—a——
Pap

14
= B_(PAP)

2 1 62 6203
Via= —— p— =
. pép YRR

V0< = G\-r 9"( + a& 1 9°f + ﬂp___,.' __.Ba
L e e 3& Ysme a¢

V-A o -xf"L )
T2 a-f( HT) TsmB ae(AB Sms +‘ism9 395
' . l.__; o f E&-r 'f‘ 6\9 Y‘Slna q¢ , :‘7_7 S

e A,,. T'A_& Tsm@ ﬂ(p

VxA

PN 9"" Tlsm@ 96 . ) ‘:"‘smg a¢,_ :

V x v x A v( V.A ) - V"A

_Ss\naoc Asc ='—(Cﬂ&ﬂ9¢)/q
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