THE OPEN UNIVERSITY OF SRI LANKA DIPLOMA IN TECHNOLOGY ECX4232 POWER SYSTEMS I FINAL EXAMINATION 2010/2011

Duration Three Hours

Date: 12 March 2010 Time: 0930-1230

This paper contains eight (08) questions. Answer any five (05). All questions carry equal marks. Electric space constant ε_a =8.85x10⁻¹² Fm⁻¹

Magnetic space constant μ_a =4 π x 10⁻⁷ Hm⁻¹

Question 1

- (a) Explain briefly the presence of capacitance and inductance in AC transmission lines [3]
- (b) Explain why short length line models are not being used for underground cables [2]
- (c) Figure Q1 shows the bundle arrangement of 500 kV overhead transmission line. Outside diameter and AC resistance at 20°C per conductor are 16 mm and 0.9 Ohm /km respectively. The length of the line is 115 km and ambient temperature is 35°C. (temperature coefficient is 0.0044 ⁻¹C)

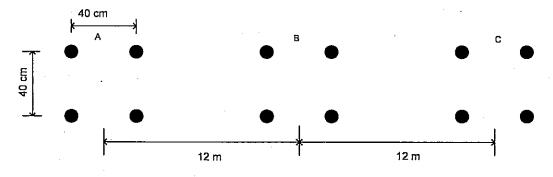


Figure Q1

- I. Calculate per-phase, per length inductance and capacitance [8]
- II. Calculate parameters of equivalent π-model of the line [5]
- III. State whether the positions of phases A, B and C of above line remains same throughout length of the line. Explain your answer [2]

Question2

Certain grid substation delivers power to a load centre via 132 kV transmission line. Power consumed by the load centre is 60 MW at 0.88 power factor lag. The length of the line is 100 km. Per-unit length parameters of the line are:

Resistance: 0.22 Ω /km

Inductive reactance: $0.4 \Omega / km$ Shunt susepctance: $4.2 \times 10^{-6} S / km$

	(a) If the voltage at the load is to be maintained at 138 kV, determine	
	 Voltage, power and power factor at the substation bus 	[10]
	II. Voltage regulation and transmission efficiency	[4]
	(b) Calculate reactive power compensation at the load-end in order to maintain at both ends of the line	32 kV [6]
Qu	estion 3	
(a)	Explain why isolator is not used as an on-loads device	[2]
(b)) What is the function of earthing switch?	[2]
(c)	Distinguish load break switch and circuit breaker	[2]
(d)) What are the materials used in overhead transmission line insulators?	[1]
(e)	List the types of insulators used in overhead lines	[1]
(f)	Define string efficiency and explain the methods of improving string efficiency	[4]
(g)	A 132 kV overhead line is hanged by an insulator consisting four discs. If the capacitance to the earth is half of the interlink capacitance determine:	
	voltage distribution across the discs	[6]
	II. string efficiency	[2]
Qu	uestion 4	
(a)	Explain briefly the methods involved in extinguishing of an electric arc in I. DC circuits II. AC circuits	r <i>a</i> 1
(b)	What are the rated characteristics/values of a circuit breaker?	[4] [2]
	Explain terms " restriking voltage" and "recovery voltage"	[4]
(d)	Explain briefly arc extinguish mechanism in	[6]
(-)	I. Air blast circuit breaker II. SF ₆ circuit breaker	
(e)	Explain briefly the necessity of interlocking. Certain transmission line is connect bus via circuit breaker with two isolators at both sides of the line. With suitable	ted to a
	explain mechanical interlocking system for this arrangement	s sketci [4]

Single line diagram of a certain power system is given in figure Q. Parameters of the elements of the systems in pu on common base are given. Answer the questions 5 and 6 (independently) using this system.

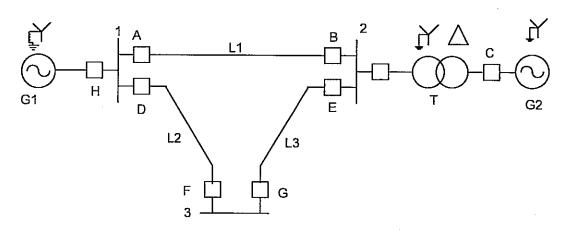


Figure Q

S	ync	hro	nous	genei	rators:

G1:	$X_1=X_2=0.175 \text{ pu } X_0=0.05 \text{ pu},$	X _n =0.03 pu
G2:	$X_1=X_2=0.125 \text{ pu., } X_0=0.075$	•

Transformer

Transmission Lines

L1:	X1=X2=0.05 pu	X0=0.15 p.u
L2:	X1=X2=0.03 p.u.	X0=0.09 p.u
L3:	X1=X2=0.03 p.u.	X0=0.09 p.u

Question 5

A three-phase fault with zero impedance occurs at one third length from the circuit breaker A in line L1 of the system shown in figure Q.

Determine

1.	Fault current	[7]
11.	Current through the circuit breakers A, B and C during the fault	[3]
111.	Voltage at the output terminals of the generator G2 during the fault	[3]
IV.	Explain briefly how this fault can be eliminated	[2]
V.	If the fault resistance is 0.01 p.u. determine fault current	[5]

Question 6

Single line to ground fault occurs at bus 3 of the system shown in figure Q.

1.	Draw the positive, negative and zero sequence networks	[4]
H.	Calculate fault current	[10]
III.	Determine the current driven by the generator G2 during the fault	Ī61 -

Question 7

- (a) Sketch daily load curve of the present Sri Lankan power system and clearly indicating peak and off-peak load times. Explain briefly major disadvantage of having this type of load curve in a power system. What measures can be taken to improve the "shape" of this load curve
- (b) List the types of electrical power stations available in Sri Lanka? Group these stations to cover the base, intermediate and peak loads of the system [7]
- (c) Explain briefly functions of following elements of hydro and thermal power stations:

Hydro: (i).reservoir Thermal: (i)boiler	(ii). penstock (ii)condenser	(iii)surge tank	[5]
---	---------------------------------	-----------------	-----

Question 8

- (a) What are the advantages and disadvantages using series capacitors in electrical power [4]
- (b) List the various methods of voltage control and explain one of them briefly
- [4] (c) Explain why the power systems are not allowed to operate beyond the permissible range
- of voltage levels [4] (d) What are the advantages of use of per unit systems in power system calculations [4]
- (e) Explain why zero sequence does not flow through faults not involving ground [4]