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This paper contains three sections A, B & C. Answer all questions in section C and ONE
question each from sections A & B.
Clearly show all the steps and state all the assumptions made.

D

2)

SECTION A

Questions in Section A, are based on the text given on page 4 and 5. Read the paragraph and
answer the following questions.

a.

What are the distributed parameters encountered in the scenario described
above?

. State the assumptions made, when drawing the fluid flow analogy for the

traffic flow.

. What are the drawbacks of using the above analogy?
. Consider an arbitrary length ‘Ax’ of the highway.

1. Write an expression for the number of cars within ‘Ax’

il. Write an equation for the conservation of cars within the section in
the time interval “At’.

iii. Obtain a partial differential equation between p & q from above.

e. Explain in your own words the relationship between p and g.
[ Total : 50 marks |
SECTION B
A certain vector field defined in the region { —eo < x < 0,0 < y <1} is given by
Ax,y)=x"i+507] .
a. Find the divergence of A. ; [ 5 marks]
b. In what region is this field incompressible? Justify. (4 marks ]
c. In what region is this field éxpanding‘? {5 marks]
d. Find the curl of A. In what region is this field irrotational? 16 marks ]
e. Find the Laplacian of A. | 15 marks ]
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3) 'Figure Q3 shows a string with finite length L, fixed at both ends. It is released from rest at
t =0, with an initial displacement f(x) at x. The transverse displacement of the string is
given by the function u(x,t).

|
|x=0 x=L| x=x,1=0 |
——

Fisure 03

The motion of the string is governed by the wave equation;

u , 0%u .
—=qa" Eq3], where a is the wave speed.
Y e [ Eq3]
a. State the boundary conditions for this scenario. [ 4 maris ]
b. What are the initial conditions for this problem ? 14 marks |

c. Obtain two ordinary differential equations from equation Eq3, by the method

of separation of variables, taking the separation constant as . [ 7 marks }
d. Find the general solutionto Eq3, forp e R & p>0. [ 10 marks ]
SECTION C

4)  The Maxwell’s equations for electromagnetism in free space can be written

i. VoB=0 a ii. VaE=0
iif. Vx§+a_§=0 iv. VxB__l_a_E_()
Lot c ot

A vector A is defined by B=vx 4, and a scalar ¢ by £=-Vg-(1/cXa4/er).
The following condition holds true for A and ¢ .

16¢
c ot

Vod+—

Show that A and ¢ satisfies the wave equations given below.

1 8%
a Vié-— -
¢ c* ot
b, vig-L o A_O [ 25 marks ]
c* 8
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A steel bar is placed horizontally and is struck with a hammer at t = Os, as shown in figure
Q5a. Let u(x,t) be the displacement of a plane of particles initially at x, at time t. Consider
an infinitesimal element of the bar, initially bounded by planes at x = x; and x = x; + Ax.
The element will be temporarily displaced as in figure Q5b.

The bar is elastic, and the force exerted on the element equals the product of its cross

sectional area A, strain & and the modulus of elasticity E, according to Hook’s law. Also the

force exerted can be expressed using Newton’s second law of motion. The mass per unit

volume of the bar is p.

u{x,t} , Ul + Al

]

(1 + )
Figure Q5a Figure Q5h

a. Derive the governing P.D.E. for the longitudinal vibration of the bar.
b: What is the speed of propagation of the wave?

Note :

. elongation of element
stram, g = g f

unstrained length of element
[ 25 marks )
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SECTION A :
Traffic Flow in a Highway
A group of under graduates was given an assignment to do a literature survey on ‘mathematical
modals of highway traffic’ and derive an equation governing the traffic flow based on a simple
modal. Given below are some of the extracts of the literature found by them. However some
parts of the text are missing and you are requested to assist in deriving the final equation.

Extract A -
" One of the mathematical models of traffic flow is the hydrodynamical theory of Lighthill

and Whitham (1958). It is a simple theory capable of describing many real-life features of
highway traffic with remarkable faithfulness. Consider any section of a straight freeway
fromax=atox - b, Figure 3. Assume for simplicity that there are no exits or entrances,
and all vehicles are on the go. Let the density of cars {maumber of cars per unit length of
.highwa.y) at 2 and ¢ be p(z,t), and the flux of cars (number of cars crossing the point
z per unit time) be g{x,t).

@ 1 (b

N
SHrmmbmne

Figure 3: (a). A section of the freeway. (b). The relation between traffic flux rate and

traffic density.

Point Noted : The cars within an arbitrary section of the highway are conserved. i.e. The number
of cars within the section is equal to the difference between the number of cars entering the

section and the number of cars exiting the section, in a given time interval.

Extract B : )
Having two unknowns q and p, a

constitutive relation between p and ¢ is needed and must be found by field measurements. |
Heuristically, ¢ must be zero when there is no car on the road, and zero again when the
density attains a maximum (bumper-to-bumper traffic), hence the relation between g

and p must be nonlinear _
g=q(p) (3.3)

Hence the final governing equation becomes;  dp (dq) dp 0 EQ-a

ot \dp/) oz
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Extract C :

3.. HYDRODYNAMIC ANALOGIES

Analogies have been often drawn between the flow of fluids and the
movement of vehicular traffic. However, the current evidences suggesis that
the equations developed from hydrodynamic analogies hold good only for
high traffic densities and indicates that continuous and steady flow analogies
almost totally obscure the fact that each vehicle is individually controlled.
Even so, most important traffic-control problems occur only under high-
density and other than “free movement” conditions; thus it might appear that
better understanding of these analogies is worthwhile.
Principal contributions to this topic have been made by Greenberg, Lighthill
and Whitham and Richards. To develop the basic relations, Greenberg’'s
approach will be used. The assumptions are:

1) High-density traffic will behave like a continuous fluid and the
corresponding fundamental motion equation for one-dimensional
continuous fluid is

db.__c db (22)
dt D dx
Where U, = fluid velocity or space mean speed, mph;
D = density, vehicles/mile;
Xx= distance, miles,
t= time to move distance x,
c= roadway parameter

Extract A& B :
From lecture notes ~ “Wave Propagation, Fall, 2006 MIT, notes by C.C. Mei"

Extract C :
From -
Traffic Flow Theory Historical Research Perspectives -
'S.L. DHINGRA, & ISHTIYAQ GULL »
1.Prof. (Retd.) Transportation Systems Engg & Emeritus Fellow, IIT Bombay-400076
2. M.Tech. Student, Transportation Systems Engg. I[IT Bombay-400076
Submitted to: Greenshields Symposium, Woods Hole, MA- July2008
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SUMMARY OF VECTOR RELATIONS
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Cartesian Cylindrical Spherical Coordinates
Coordinates Coordinates
Coordinate R At ro,:z r, 8¢
variables
Vector - R+ 34, +24 FA, A, + 74, T +8.4 v
representation, A = % ] Ao, ) 4 Y o
Magnitude of A, [Al ,1‘-{3 +A§+A§

Position vector from

origin to Py, O—Pl=

¥+
for Pxy, y1. 71)

£ + 2z,
for P(ry,¢h. 1)

rr
for P(ry, 61, th)

Differential length,
dl =

Xdx 4 ¥y -+ Zdz

tdr +drdd + 2dz

vdr+8rdo +grsinddd

Differential surface | ds_ = 3dyd- ds, =Frdpd- ds, = f-;-lsineded(p
arenas o gt ; :
s, = ydiz dsy = $edrdz dsy =B sind drde
ds, = zehvdy ds, = Zrdrdg ds, = gEI'c’h'dB
Differentinl volume, | dxdy d= rdrd dz  smé dr di

dv =

A,B,C are vectors and ¢ a scalar function
ABxC=B.-(CxA)=C-(A xDB)
AxBxC=BA-C)—-CA-B)
WAxB). (CxD)=A-O)B-D)—(A-DHB-C)
V(@A) =A -Vé+dV-A
Vx(dA)=Vo X A+dV x A
AX(VxBI=VA-B)—(A- VBB -VIA-Bx(VxA)
V~(AxB')=B-(§xA)—A (V x B)
VxAxB=ANV-B)-B(V - A)+(BIA-(A-V)B
VxVxA=V(V-A)-VA
V x Va=0
V- (VxA)=0

fﬁ\-ﬁd.S': /V-Adv
5 Je

Divergence Thecrem
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VECTOR OPERATIONS - RECTANGULAR COORDINATES

Va"-n£g+a—a-g+aaa
Tax Ty | oz
o . - 2Ac 9A, aA
VeA= —F 4 —F 4 ==
- ax oy 7z _ .
dA, . 3 .
V:-:A_a,( A Ohy) o |Th_Oh), [0h 24
5}' az | oz ax 2x dy

" e Fa o
2
Vo= 312..+ byl + az =V- Va 3

V2A~ 2, V24, + a, V24, + aZVZA =V(V-A)—Vx(V x A)

VECTOR OPERATlONS CYLINDRICAL CO.RDINATES -

do I da
? 104 JA
VA= —— e :
p Bp(pAp) + g ¢h az
. 13A, 0dA dA dA,
VX A= =——"~———f)+ (-——P—-————) —(__ )
a"(p 3¢  az| HNaz ap (pda) = g

Ve 12 ga«) 1d%a  da
. pap pa ik 3

JA, A 2 3A, A\ .
—‘f - ";')2&] -+ a¢(V1A¢ + — '—') + B:VIA;

2
P a 2 3q5 I
VECTOR OPERATIONS - SPHERICAL COORDINATES
~OF ti) ; B
V¥ =L gL T () mn(ﬂ)ﬂp(m

VA= 12 p(VEA o

i
U} ,j,q ("lﬂsm (9)) + rsm( ) ,_1;

12
v-a=Li(Fa)r gy
v 07 rsin (B
= 1 a4 d

A, rdy rsin () 4p

VxA= rs*ii(l)) (uf%‘{ﬁsm 0~ %%i) + L ( qmi{()) Bq o (7‘4!,)) %"(g;(f‘fia) “‘

210 1 0 201 1 i 18
V'V = l_i(, g )—I— 2 (sin (8)2 Ry
: ' o ( ( ) risin(p) apt
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