The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX 5239 – Physical Electronics Final Examination – 2011/2012

Date: 2012-03-14 Time: 1400-1700

Answer five questions by selecting three from Section A and two from Section B.

Note: Charge of an electron = 1.602×10^{-19} C , Mass of an electron = 9.109×10^{-31} kg Boltzmann constant = 8.617×10^{-5} eV K⁻¹.

For any missing parameters suitable values can be assumed.

Section A -

Select three questions from this section.

Q1.

- (i) Why the ability to conduct electricity or conductivity, higher in metals than in semi-conductors in room temperature?
- (ii) The bandgap energy in a semiconductor is usually a slight function of temperature. In some cases the bandgap energy versus temperature can be modeled by

$$E_g = E_g(0) - \frac{\alpha T^2}{(\beta + T)}$$

where $E_g(0)$ is the value of the bandgap energy at T=0 K. For silicon the parameter values are $E_g(0)=1.170$ eV. $\alpha=4.73\times 10^{-4}$ eV/K and $\beta=636$ K. Plot the variation of bandgap with temperature in suitable intervals over the range $0 \le T \le 600$ K. In particular, note the value at T=300 K.

(iii) Interpret your results.

Q2.

- (i) Briefly explain why the narrower the band gap, the higher is the intrinsic carrier density in a semiconductor.
- (ii) Assume that silicon, germanium and gallium arsenide each have dopant concentrations of $N_d=1\times 10^{13}~{\rm cm^{-3}}$ and $N_a=2.5\times 10^{13}~{\rm cm^{-3}}$ at $T=300~{\rm K}$. For each of the three materials
 - (a) Is this material n type or p type?
 - (b) Calculate n_0 and p_0 .

Material	n_i
Si	1.5 × 10 ¹⁰ cm ⁻³
Ge	$2.4 \times 10^{13} \text{cm}^{-3}$
GaAs	$1.8 \times 10^6 \text{cm}^{-3}$

(iii) Interpret your results obtained in part (ii).

Q3.

- (i) What is the meaning of the Fermi-Dirac probability function?
- (ii) (a) Determine the position of the Fermi level with respect to the intrinsic Fermi level in silicon at $T=300 \, \mathrm{K}$ that is doped with phosphorus atoms at a concentration of $10^{15} \, \mathrm{cm}^{-3}$.
 - (b) Repeat part (a) if the silicon is doped with boron atoms at a concentration of 10^{15} cm⁻³.
 - (c) Calculate the electron concentration in the silicon for parts (a) and (b).

Q4.

- (i) Explain what you mean by "Hall Effect" in your own words.
- (ii) Germanium is doped with 5×10^{15} donor atoms per cm³ at T=300 K. The dimensions of the Hall device are $d=5\times 10^{-3}$ cm, $W=2\times 10^{-2}$ cm, and $l=10^{-1}$ cm. The current is $I=250~\mu\text{A}$ the applied voltage is $V_x=100~\text{mV}$ and the magnetic flux density is $B_z=5\times 10^{-2}$ Tesla. Calculate
 - (a) the Hall voltage,
 - (b) the Hall field and
 - (c) the carrier mobility.

Q5.

- (i) Why does a capacitance exist in a reverse-biased pn junction? Why does the capacitance decrease with increasing reverse bias voltage?
- (ii) Consider a uniformly doped silicon p-n junction with doping concentrations $N_A=5\times 10^{17}{\rm cm}^{-3}$ and $N_D=10^{17}{\rm cm}^{-3}$.
 - (a) Calculate the built in voltage V_0 , at T=300 K.
 - (b) Determine the temperature at which V_0 decreases by 1 percent.

Section B

Select two questions from this section.

Q6.

- (i) Discuss the assumptions which made for the derivation of the Ideal Diode Equation.
- (ii) Compare the I-V characteristics of an Ideal Diode and a Real Diode.

Q7.

- (i) Discuss about the photo-voltaic effect.
- (iii) Explain the function of a Light Emitting Diode.

Q8.

- (i) What are the advantages of simulating the I-V characteristics of a MESFET?
- (ii) JFET Model for the GaAs MESFET I-V characteristics is given below. Discuss about the validity of the model.

$$V_{DS} < E_{VGS}V_{GS} - V_{TH} \left(linear \ region \right) : I_{DS} = \beta V_{DS} [2(E_{VGS}V_{GS} - V_{TH}) - V_{DS}] (1 + \lambda V_{DS})$$

$$V_{DS} > E_{VGS}V_{GS} - V_{TH} \left(saturation \ region \right) : I_{DS} = \beta V_{DS} (E_{VGS}V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

