THE OPEN UNIVERSITY OF SRI LANKA

FACULTY OF ENGINEERING TECHNOLOGY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING
BACHELOR OF TECHNOLOGY

ECX6235 - COMPILER DESIGN

Date: August 13,2013 Time: 0930 — 1230 hrs

~ Important:

1. This question paper consists of five questions.

2. Answer all questions in Part A (60 marks) and TWO questions from Part B (40
marks).

3. State your assumptions if any

Part A — Answer all questions

Refer the attached article of a case study (CASE-STUDY: A VIDEO STORE) in page 3&
4 to answer the question Q1.

[Q1]

The attached article explains a grammar-based approach to validating class
diagrams and illustrates this technique using a simple case-study. The article
presents a brief description of a video store case study. A video store consists of a
video and customer database.

(a) Identify the grammar rules and briefly explain with examples how a cyclical
nonterminating relationship in the grammar cause to fail the use case strings to

" be parsed.
[10 Marks]

(b) Identify the grammar rules and briefly explain with examples how to remove a
cyclical nonterminating relationship in the grammar.

[10 Marks]

(c) Define the grammar G after removing the cyclical nonterminating
relationship.

[10 Marks]

(d) What are the terminals and the non-terminals in this grammar? [05 Marks]

(e) Write LEX implementation syntax for token of the compiler. [10 Marks]

(f) Write an example-string, if you wish to rent a cartoon film and two action
films for ten days from the video store.

[05 Marks]
(g) Validate your string using the grammar G. [10 Marks]

Page1of4

00050

Part B — Answer only TWO questions

[Q2]
* "
(a) Draw a NFA for the regular expression (ab) (ba|a). [05 Marks]
(b) Convert the NFA obtained in (a) to a DFA. [15 Marks]

[Q3] Consider the grammar.
E — BA

A—>&BA| ¢
B—1]0

; Where E, A, B are non-terminals and others are terminals.

(a) Derive the string: / & 0 & 1 [02 Marks]
(b) Define the Chomsky Normal Form (CNF) for CFGs. [02 Marks]
(c) Convert the given grammar into CNF. [14 Marks]
(d) Derive the above string in (a) using your new grammar in (c).
[02 Marks]
[04]
(a) Briefly explain the four types of grammars with applications. [10 Marks]

(b) Draw a diagram and briefly explain the compilation phases by giving
examples for each phase.

[10 Marks]

[05] A Turing Machine accepts only the strings of the form 0"1"2" for (n > 0) and the
blank symbol B.

(c) Draw the transition graph. [14 Marks]

(d) List the moves made for the input “ 001122 ” using instantaneous descriptions.
[06 Marks]

End.

Page2o0f4

the system. The user-supplied strings are tested against the parser
generated for the DSL by LISA. Ideally, only all the positive
strings should be parsed successfully. If a positive string is not
parsed, it indicates that a use case desired by the user can not be
represented by the current class diagram. As additional feedback
(Stage 5), the approach provides-a list of strings that are most
similar to the string provided. This metric is calculated using the
Levenshtein distance [6]. The Levenshtein distance, also known
as the Edit Distance, measures the similarity between two strings.
The distance is the number of deletions, insertions, or
substitutions required to transform a source string into a target
string. The greater the Levenshtein distance, the more dissimilar
the strings are. In the next section, we illustrate the validation
process using a Video Store case study.

4. CASE-STUDY: A VIDEO STORE

This section presents a brief description of a video store case
study. A video store consists of a video and customer database.
The video database contains information on all video titles
currently on file, and the user (customer) database contains
information on all current members of the video store, as well as
all videos currently rented by each customer. A customer can walk
into the video store and either rent a movie, or become a member
of the store. The customer is served by the owner of the store (or
an employee). The store owner can also add new titles to the
video database. Figure 2 gives the use case diagram for this
example.

00050

4.1 Validating Static Behavior

In UML, class diagrams model the static structure of a system —
the classes and their relationships. However, class diagrams do
not explain how these structures cooperate to manage their tasks
and provide the functionality of the system. The video store
system is composed of the classes VideoStore, User and Movies
(see Figure 4). The association Rentals describes the videos rented
by a customer.

. Tell:.Custorier *Mdvie
Rented Out”

[all.opies rented]

® ‘Custamer Info.addRent()

[copy of movie available]

A
-0 Updateli Update Vidso
‘Customier info: ;. Type Infa’:

Figure 3. Activity Diagram for the rent movie use case.

Figure 2. Use case diagram for the Video Store System

In UML, the functionality of the system is represented by use
cases that interact with the system actors. In the video store
example, the actors are the customer and owner. Each use case
can be refined to an activity diagram. Activity diagrams focus on
work performed during the activities in a use case instance or in
an object. Due to space limitations, we only present the activity
diagram for the rent movie use case (see Figure 3). The use case
and activity diagrams are used by the user in forming the input
test cases for the feedback component of the process. The activity
diagrams are not used by the automated component of the
validation process, but they are used by the user when
constructing appropriate use cases while analyzing the CFG. The
activity diagram also helps the user better formulate the desired
functionality of the system.

Figure 4. Class Diagram for the VideoStore Case Study.

Initially, the class diagram is converted into an XML
representation. During Stage 2 of the validation process, the XML
representation of the class diagram is converted into a CFG
representation, as shown in Table 2.

1. VideoStore > MOVIES CUSTOMERS | CUSTOMERS
MOVIES | MOVIES | CUSTOMERS

2. MOVIES - MOVIES MOVIE | MOVIE

3. MOVIE - title type

4. CUSTOMERS -> CUSTOMERS CUSTOMER | eps

5. CUSTOMER -> name days RENTALS

6. RENTALS -> RENTALS RENTAL | RENTAL

7. RENTAL - MOVIEL

8. MOVIE] = title type

Table 2. Video Store Class Diagram Represented as a CFG

A CFG consists of a start symbol, a set of production rules,
terminals, and non-terminals. The CFG in Table 2 contains seven
productions with the start symbol indicated by VideoStore.

Page 3 of 4

would need to be revised. Correspondingly, if a positive sample
fails, then it would mean that a required functionality cannot be
obtained from the class diagram, and the class diagram needs to
be reconsidered. As an example, it can be observed that the Add
Customer use case cannot be satisfied by the class diagram in
Figure 4. In other words, the derived CFG is not able to generate
any strings corresponding to the Add Customer scenario. Upon
noticing this lack of functionality, the UML class diagram can be
refactored as follows: note that class Customer contains the
attributes name and daysRented. A new class Rental is added, and
attribute daysRented is shifted to class Rental. After this
refactoring, the Add Customer use case is possible. Figure 5
shows the refactored class diagram.

itle : string i.x

FdaysRented sink |

Figufe 5 Refactored Class Diagram for the Video Store.

Step 5 of the process provides feedback to the user in the event
that a string is not in the language of the CFG. In this case, the
user is provided a set of strings that are similar (to a certain
extent) to the string provided by the user in the hope that one of
the strings in the feedback set would be what the user really
desires. The total size of the feedback string set and the similarity
degree of the strings are parameters provided by the user. As an
example, consider the following string, which is rejected by the
CFG in Figure 5:

TheRing

The closest match for this string is rule 3. Although this string will
fail to be parsed, the user might be provided with the feedback set
given in Table 4.

00050

4.3 CYCLICAL RELATIONS

Naive approaches to generating CFG’s from UML diagrams can
encounter complications like an infinite, non-terminating
recursive grammar. Our approach is able to derive a correct
infinite terminating recursive grammar in the presence of such
relationships, and we demonstrate this by proposing a small
modification to the VideoStore case study example.

Assume that in the class diagram of Figure 4, a 1-to-many relation
Rental2 exists between Movie and Customers. This would make
sense if multiple copies of a movie exist, and can be rented by
many customers. An example of a naive CFG produced from this
class diagram would be:

1. VideoStore > MOVIES CUSTOMERS | CUSTOMERS
MOVIES | MOVIES | CUSTOMERS

2. MOVIES > MOVIES MOVIE | MOVIE

3. MOVIE - title type RENTALS2

4. RENTALS2 -> RENTALS2 RENTAL2 | RENTAL2

5. RENTAL2 = CUSTOMER

6. CUSTOMERS > CUSTOMERS CUSTOMER | CUSTOMER
7. CUSTOMER -> name days RENTALS

8. RENTALS > RENTALS RENTAL | RENTAL

9. RENTAL > MOVIE

Production sets (3, 4, 5) and (7, 8, 9) indicate a cyclical non-

terminating relationship in the grammar. In this situation, use case
strings will fail to be parsed because the grammar is non-
terminating and infinite. This problem arises whenever a class,
modeled by a non-terminal, is referred to by another class via a
relation, which is also modeled by a non-terminal. We propose
using a new non-terminal to model the destination class pointed to
by the source class in a relation. This prevents the problem of
inheriting the relation non-terminals of the destination class by the
source class. Using this technique, the CFG for the modified
VideoStore example changes to the CFG in Table 5.

Similarity: 60%

Total number of strings: 4
1) TheRing a

2) TheRing aa

3) TheRing aaa

4) TheRing aaaa

1. VideoStore <> MOVIES CUSTOMERS | CUSTOMERS
MOVIES | MOVIES | CUSTOMERS

2. MOVIES > MOVIES MOVIE [MOVIE

3. MOVIE - title type RENTALS2

4. RENTALS2 = RENTALS2 RENTAL2 | RENTAL2

5. RENTAL2 - CUSTOMER1

. 6. CUSTOMERI > name days

7. CUSTOMERS -> CUSTOMERS CUSTOMER | CUSTOMER
8. CUSTOMER -> name days RENTALS

9. RENTALS -> RENTALS RENTAL | RENTAL

10. RENTAL - MOVIE1
11. MOVIEI - title type

Table 4. A Sample Feedback Set Provided by the System

The similarity measure of 60% requires that the total number of
strings in the set is at least 60% similar to the original string. As
an example, compare the following two strings: TheRing, and
TheRing a. These two strings differ by only 1 character.

Table 5. VideoStore CFG to Handle Cyclical Relations

An example of a string in this CFG would be:

1. theRing horror

2. Jack 5 Ann 5§ Mike 10

3. jurassicPark child

4. John 1Jane 5

5. Bruce 10

6. theRingTwo horror

Sentences 1-4 correspond to two instances of the Rentals2
relation, and sentences 5 and 6 are an instance of the Rental
relation.

Page 4 of 4

