The Open University of Sri Lanka Department of Electrical and Computer Engineering Final Examination 2012/2013 ECX6234 - Digital Signal Processing

Time: 0930 - 1230 hrs.

Date: 2013-08 - 03

Answer any FIVE questions

1.

(a) (i) Write an expression for $X(\omega)$ the Discrete Time Fourier Transform (DTFT) of x[n]. Find $X(\omega)$ for the x[n] given below:

- (ii) Define z-transform X(z) of x[n]. What is the relationship between X(z) and $X(\omega)$?
- (b) From first principles determine the z-transform and the Region of convergence (ROC) of $2^n u[n]$.
- (c) Derive an expression for the z-transform of $x[n-n_0]$ in terms of X(z).
- Find the inverse z-transform x[n] of $X(z) = \frac{z}{(z-1)(z-2)}$, 1 < |z| < 2. (d)

2.

- What is a BIBO stable system? (a) If the impulse response of a BIBO stable LTI system is h[n], show that $\sum |h[n]|$ is always bounded.
- (b) Find whether the systems with following impulse responses are BIBO stable:
 - (i) h[n] = u[n]

(ii)
$$h[n] = 0.5^n u[n]$$

- (c) What is a causal system? Show that for a causal system, impulse response h[n] = 0 for n < 0
- 3.(a) The input x[n] and the output y[n] of a causal system is related by the following difference equation:

$$y[n] - \frac{3}{8}y[n-1] + \frac{1}{8}y[n-2] = x[n]$$

- (i) Find the system function $H\{z\}$.
- (ii) Find the impulse response h[n].

(b)

For the linear system shown in Fig.2, write state space equations. You may use the states $s_1[n]$ and $s_2[n]$ in your equations.

4.

(a) The sequence x[n] is down sampled using the sampling operator $\delta_D[n]$. The resulting function $v[n] = x[n] \cdot \delta_D[n]$.

$$\delta_D[n] = \begin{cases} 1 & \text{if } \frac{n}{D} \text{ is an integer} \\ 0 & \text{otherwise} \end{cases}$$

If D = 2 derive an expression for $\delta_D[n]$ and show that

$$V(z) = \frac{1}{2}X(z) + \frac{1}{2}X(-z)$$

(b) If $v[n] = \frac{1}{D} \sum_{k=0}^{D-1} x[n] e^{-j2\pi k \frac{n}{D}}$ represents the sampled signal, show that

$$V(\omega) = \frac{1}{D} \sum_{k=0}^{D-1} X(\omega - 2\pi k/D)$$

- (c) A sequence x[n] is up sampled by a factor L (L-1 zeros are added between samples). If the output of the sampler is y[n], write an expression for $Y(\omega)$ in terms of $X(\omega)$.
 - Suppose $X(\omega) = |\cos(\omega)|$, sketch $X(\omega)$ and $Y(\omega)$ for $-4\pi \le \omega \le 4\pi$ if L = 4.
- 5. A sequence is given by x[n] = [0.5, 1, 0.2, 0, 1, 0.7, 0, 0, 0,0], n = 0, 1, 2, This sequence is transformed in to the analogue signal x(t) using the first order hold (FOH) function g(t) shown in Fig.3.

Fig.3

- (a) Sketch x[n].
- (b) If $x(t) = \sum_{n=0}^{m} x[n] g(t nT_s)$, sketch x(t) for m = 1.
- (c) Decide a suitable value for m and sketch the analogue signal x(t).
- (d) Derive an expression for X(F) (Fourier Transform of x(t)) in terms of G(F) and $X(\omega)$, where $X(\omega)$ is the Discrete Time Fourier Transform of x[n].
- (e) Normally x[n] is sent through an antialiasing filter before the FOH. Why is that?

6.

(a) A filter has a difference equation y[n] = a y[n-1] + x[n] + x[n-1], where a is constant. Find what kind of filter does the equation represent (a FIR filter or a IIR filter) if (i) |a| < 1

(ii)
$$|a| \ge 1$$

- (b) The impulse response of a certain causal filter can be represented by the sequence h[n] which has finite energy.
 - (i) Can the filter be recursive (IIR filter)? Is it necessary that the filter be a finite impulse response filter?
 - (ii) Sketch h[n] for a typical case.

- (c) Paley-Wiener theorem states that if h[n] is a causal sequence with finite energy then $\int_{-\pi}^{\pi} |\log |H(\omega)| |d\omega < +\infty$, where $H(\omega) = DTFT\{h[n]\}$ Using this result show that an ideal lowpass filter cannot be causal.
- 7.
- (a) Sketch the frequency response of a non ideal lowpass filter and mark important regions. Compare critical parameters of a non ideal filter with an ideal filter. In the design of a lowpass filter explain how these values can be utilized.
- (b) In the design of a window based filter the transfer function of the final filter can be written in the form H(ω) = e^{-jωL}H_w(ω).
 What is L? How is H_w(ω) related to the window function w[n]?
 Derive the above equation for H(ω) using first principles.
- (c) Design a digital lowpass filter having a pass band of $4.2 \, kHz$, a stop band of $5 \, kHz$ with at least $30 \, dB$ attenuation and the sampling frequency of $22 \, kHz$.
- 8. Briefly explain the following:
 - (a) DFT Filter banks and transmultiplexers
 - (b) Multistage implementation of digital filter.
 - (c) Fast Fourier Transform.
 - (d) Estimator model of a Kalman filter

Supplementary material

(a) Window functions

Window type	w(n)	Δω	Attenuation
Rectangular	1	$\frac{4\pi}{N}$	-13dB
Bartlett	$\frac{2}{N-1} \left(\frac{N-1}{2} - \left n - \frac{N-1}{2} \right \right)$	$\frac{8\pi}{N}$	-27dB

Hanning	$0.5 + 0.5\cos\left(\frac{2\pi n}{N-1}\right)$	$\frac{8\pi}{N}$	-32dB
Hamming	$0.54 + 0.46\cos\left(\frac{2\pi n}{N-1}\right)$	$\frac{8\pi}{N}$	-43dB
Blackman	$0.42 + 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{2\pi n}{N-1}\right)0.42 +$	$\frac{12\pi}{N}$	-53dB

(b) Some important Z-transforms

Function	z-transform	ROC	
$\delta[n]$	1	All z	
u[n]	$\frac{z}{z-1}$	z > 1	
$a^nu[n]$	$\frac{z}{z-a}$	z > a	
$-a^nu[-n-1]$	$\frac{z}{z-a}$	z < a	
nx[n]	$X\left(\frac{1}{z}\right)$	$R' = \frac{1}{R}$	
x[-n]	$-z\frac{dX(z)}{dz}$	R'=R	
$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	$R' = z_0 R$	
$e^{j\Omega_0 n}x[n]$	$X(e^{j\Omega_0n}z)$	R'=R	

X(z) is the z-transform of x[n]. R is the ROC of X(z)