THE OPEN UNIVERSITY OF SRI LANKA BACHELOR OF TECHNOLOGY – LEVEL 05 FINAL EXAMINATION – 2012/2013 MPJ 5134 – THE NATURE OF MATHEMATICS I DURARTION: THREE HOURS (3.00)

Date: 28th July 2013

Time: 1330hrs - 1630hrs

Instructions:

- Answer five (05) questions
- Number of pages in the paper 04.
- All symbols are in standard notation.
- 01. (a) Let $a, b \in \mathbb{R}$. Using field and order axioms prove that:
 - (i) a.0 = a,
 - (ii) -(-a) = a,
 - (iii) a.(-b) = -a.b,
 - (iv) Deduced that $(-b)^2 = b^2$. Hence, show that $(a-b)^2 = a^2 2ab + b^2$. [50%]
 - (b) (i) Let $x, a, b \in \mathbb{R}$, show that |x a| < b if and only if a b < x < a + b.
 - (ii) Solve $\left| \frac{1}{x-1} 2 \right| < 1$ for all possible solutions and draw the related graph. [30%]
 - (c) Prove by mathematical induction that $n^5 n$ is divisible by 5 for all natural numbers n.[20%]

Turn Over

- 02. (a) Let p, q and r be propositions.
 - (i) Show that $p \Rightarrow q \equiv \neg p \lor q$. Hence, show that the proposition $(q \land (p \Rightarrow \neg q)) \Rightarrow \neg p$ is tautology. [30%]
 - (b) Use truth tables to discover whether the following "equivalences" are valid or not.
 - (i) $\sim (p \lor \sim q) \lor (\sim p \land \sim q) \equiv p$.

(ii)
$$(p \Rightarrow q) \lor (p \Rightarrow r) \equiv p \Rightarrow (q \lor r)$$
. [40%]

- (c) Determine the validity of the arguments:
 - (i) $(p \Rightarrow q) \land p \vdash q$.

(ii)
$$((p \Rightarrow q) \land \sim q) \vdash \sim p$$
. [30%]

- 03. (a) Give a direct proof for:
 - (i) If a is an odd integer and b is an even integer, then ab is an odd integer.
 - (ii) Let x be a real number. Then $\left|x + \frac{1}{x}\right| > 1$. [30%]
 - (b) Show using proof by contradiction that:
 - (i) If x is an irrational number, then x + 7 is irrational.
 - (ii) Suppose a is an integer. If $a^2 2a + 7$ is even, then a is odd. [40%]
 - (c) (i) Show that if $|x^2 4x + 6| \neq 2$, then $x \neq 2$.
 - (ii) Suppose a and b are positive real numbers such that $a^{\sqrt{b}} \neq b^{\sqrt{a}}$. Show that $a \neq b$. [30%]
- 04. (a) Determine whether or not each set is the null set:
 - (i) $A = \{x \mid x \in \mathbb{R} \text{ and } x^2 + x + 1 = 0 \text{ or } x = 1\}.$
 - (ii) $B = \{x | x \in \mathbb{R} \text{ and } |x 8| + 4 = 0 \}.$
 - (iii) $C = \{x \mid x \in \mathbb{R} \text{ and } \{x\} \subseteq \phi\}.$ [30%]
 - (b) Suppose A, B are sets and $A = A \cap B$
 - (i) What is $A \cup B$ equal to?

- (ii) What is $B \setminus A$ equal to?
- (iii) What is $(B \setminus A) \cup A$ equal to?

[30%]

- Suppose A, B, C are sets.
 - (i) Show by the Venn diagram method that $A \cup B \setminus C = (A \setminus C) \cup (B \setminus C)$.
 - (ii) Give an example to show that $A \cap (B \cup C) \neq (A \cap B) \cup C$.

[40%]

05. (a) Suppose E is a universal set. Now consider the following three results: For any subsets A, B, C of E,

C(1):
$$(A^c)^c = A$$

C(2):
$$(A \cup B)^c = A^c \cap B^c$$

- De Morgan's Laws

C(3):
$$(A \cap B)^c = A^c \cup B^c$$

C(4):
$$A \cap A^c = \phi$$

C(5):
$$A \cup A^c = E$$

C(6):
$$A \subseteq B \Rightarrow B^c \subseteq A^c$$

U(1): $A \cup A = A$.

- Idempotency
- U(2): $A \cup B = B \cup A$.
- Commutativity

- U(3): $A \cup \phi = A$.
- U(4): $A \cup (B \cup C) = (A \cup B) \cup C$. Associativity

U(5):
$$A \cup B = B \Leftrightarrow A \subseteq B$$
.

Prove that: (i)
$$\phi^c = E$$
, (ii). $E^c = \phi$, (iii). $A \subseteq B \Leftrightarrow B^c \subseteq A^c$

[30%]

- (b) Show by the logic method that:
 - ${x \mid x \in \mathbb{R}, \ |x-1| < 1} = {x \mid x \in \mathbb{R}, \ x < 1} \cap {x \mid x \in \mathbb{R}, \ x > 0}.$
 - ${x \mid x \in \mathbb{R}, \ x^2 3x + 5 > 3} = {x \mid x \in \mathbb{R}, \ x < 1} \cup {x \mid x \in \mathbb{R}, \ x > 2}.$ (ii) [30%]
- (c) Suppose A, B, C are subsets of universal set E. Prove by the logic method that:
 - If $A \subseteq B$ and $C \subseteq D$, then $A \cap C \subseteq B \cap D$. (i)

Turn Over

(ii) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

[40%]

06. (a) Let $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6\}$ ñ is the relation from $A \times B$ where for any $x \in A$, $y \in B$ $x \| y \Leftrightarrow x + 1 < y$.

Let $S = \{(x,y) | x \in A, y \in B \text{ and } x \tilde{n} y\}$, $T = \{(x,y) | x \in A, y \in B \text{ and } x \tilde{n}^{-1} y\}$ and $U = \{(x,y) | x \in B, y \in A \text{ and } x \tilde{n}^{-1} y\}$. Write down all members of S, T and U. [40%]

(b) Consider the relation \tilde{n} on \mathbb{N} where $\forall x, y \in \mathbb{N}$, $x\tilde{n}y \Leftrightarrow 7|x-y$.

Show that ñ is an equivalence relation on N. Find all disjoint equivalence classes [2],[5] and [13].

[60%]

- 07. (a) Let a, b and c be integers.
 - (i) Show that if d|a and d|b, then d|a+b.
 - (ii) If a|c and b|d, then ab|cd, where $a \neq 0$, $b \neq 0$.
 - (iii) Let gcd(a, b) = g. Show that gcd(a, a + b) = g. [50%]
 - (b) Using well-ordering principle of N,
 - (i) show that for all $n \in \mathbb{N}, 1 + 3 + 5 + \dots + (2n 1) = n^2$.
 - (ii) show that for all $n \in \mathbb{N}, 1 + 2 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} 1$. [50%]

END Copyright reserved