The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX 5241 - Distributed Parameter Systems Final Examination - 2012/2013

Date: 2013-08-04 Time: 0930-1230

The paper contains two sections A and B. Answer four questions by answering all in section A and one question from section B.

Section A

Answer all questions in this section. (20 Marks for each)

- 1. (a) Compare terms "Distributed parameter systems" and "Lumped parameter systems"
- (b) Choose any physical system and explain how it can be modeled as a distributed parameter system.
- (c) Starting from the general form of PDE, explain how the second order partial differential equations are classified as hyperbolic, parabolic and elliptic equations.
- 2. (a) Explain what is an irrotational vector field?
- (b) Show that
 - (i) $\nabla \cdot (\nabla \Phi \times \nabla \Psi) = 0$ and
 - (ii) $\nabla \times (\phi a) = \nabla \phi \times a + \phi \nabla \times a$ where ϕ and ψ are scalar fields and a is a vector.
- (c) Compute the flux of water through the parabolic cylinder $S: y = x^2$, $0 \le x \le 2$ and $0 \le z \le 3$. The velocity of the water vector $\mathbf{v} = [3z^2, 6, 6xz]$. (Generally $\mathbf{F} = \rho \mathbf{v}$, but water has the density $\rho = 1$ g/cm^2)
- 3. (a) What are the differences between **Finite Element Method** and **Finite Difference Method**?
- (b) What are the disadvantages of Finite Element Method?
- (c) The 'pdetool' in Matlab^(R) is used to solve PDEs using Finite Element Method. State the steps that you have to follow in solving PDEs. (No need to explain Matlab^(R) menu options).

Section B

Select one questions from this section. You may start with the general solution of the PDE. (40 Marks)

- 4. A string of length L is fastened at both ends A and C. At a distance b from the end A the string is transversely displaced to a distance d from rest when it is in this position. Find the equation of the subsequent motion.
- 5. Find the temperature of a thin metal rod of length L, with both ends insulated and with initial temperature of the rod at a distance x is $sin(\pi x/L)$.